
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 29/10/2021 par :
Quentin ROULAND

Rigorous development of secure architecture within the
negative and positive statements: properties, models,

analysis and tool support

JURY
Jean-Paul Bodeveix Professeur des Universités Président du Jury
Samia Bouzefrane Professeure des Universités Examinateur
Brahim Hamid Professeur des Universités Directeur de Thèse
Jason Jakolka Associate Professor Examinateur
Régine Laleau Professeure des Universités Rapporteur
Carsten Rudolph Associate Professor Rapporteur

École doctorale et spécialité :
MITT : Informatique et Télécommunications

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (UMR 5055)

Directeur de Thèse :
Brahim HAMID

Rapporteurs :
Régine LALEAU et Carsten RUDOLPH

ii

Résumé

Notre société est devenue plus dépendante des systèmes logiciels complexes, tels que les
systèmes de technologies de l’information et de la communication (TIC), pour effectuer
des tâches quotidiennes (parfois critiques). Cependant, dans la plupart des cas, les or-
ganisations et particulièrement les plus petites placent une valeur limitée sur les données
et leur sécurité. Dans le même temps, la sécurité de ces systèmes est une tâche difficile
en raison de la complexité et connectivité croissante dans le développement des TIC. De
plus, la sécurité a une incidence sur de nombreux attributs tels que la transparence, la
sureté et l’utilisabilité. Ainsi, la sécurité devient un aspect très important qui devrait être
pris en compte dans les premières phases du cycle de développement. Dans ce travail,
nous proposons une approche afin de sécuriser les architectures logicielles des TIC pen-
dant leur développement en considérant la vision positive, qui se manifeste par l’étude
des objectifs de sécurité (ex., confidentialité), et la vision négative, qui se manifeste par
l’étude des menaces (ex., usurpation). Les contributions de ce travail sont triples: (1)
un framework de conception intégré pour la spécification et l’analyse de bibliothèques de
modèles (formels) réutilisables pour les architectures logicielles sécurisées; (2) une nouvelle
méthodologie basée sur les modèles pour développer une architecture logicielle sécurisée
par réutilisation; et (3) une suite d’outils support.

L’approche associe l’ingénierie dirigée par les modèles (IDM) et les techniques formelles
pour concevoir un ensemble de langages de modélisation afin de spécifier et analyser
des modèles d’architecture et de propriétés permettant la réutilisation et ainsi capi-
taliser un savoir-faire en matière de sécurité. Les résultats sont fournis sous forme de
deux artéfacts complémentaires: (a) un processus de développement de bibliothèques
de modèles réutilisables pour la spécification et la vérification d’objectifs et de menaces
de sécurité par un expert en sécurité; et (b) un processus de conception d’architecture
sécurisé par un architecte s’appuyant sur les bibliothèques spécifiées dans le processus (a).
Le processus (a) comprend les activités suivantes: (1) la spécification formelle d’objectifs
et de menaces de sécurité comme propriétés d’un modèle en utilisant un langage de
spécification indépendant technologiquement; (2) l’interprétation des bibliothèques de

iii

modèles résultants dans un langage formel outillé; et (3) la définition de politiques de
sécurité en tant que solutions abstraites de sécurité pour assurer les propriétés de sécurité.
Le processus (b) comprend les activités suivantes: (1) l’analyse d’un modèle d’architecture
concret afin de vérifier les exigences et d’identifier les problèmes de sécurité en réutilisant
les modèles de propriétés; (2) la sélection et l’intégration des modèles de politiques pour
atténuer les problèmes de sécurité identifiés; et (3) la génération de feedbacks sous forme
de rapport sur le modèle d’architecture logicielle et sa sécurité (menaces résiduelles, vali-
dation d’objectifs, etc.).

Pour valider notre travail, nous avons exploré un ensemble de menaces représentatives
extraites de la classification STRIDE et un ensemble d’objectifs de sécurités représentatives
extraites de la classification CIAA dans le contexte de développement d’architecture à base
de composants et de communication à base de messages. Dans le cadre de l’assistance
au développement d’architectures sécurisées, nous avons mis en place une chaine d’outils
autour de la plateforme Eclipse afin de soutenir les différentes activités de notre approche
s’appuyant sur un ensemble de langages de modélisation et de langages formels outillés
existants. L’évaluation de ce travail est présentée à travers un exemple simple de site web
de bibliothèque universitaire issue de OWASP et un système de passerelle de compteur
intelligent issue d’un projet de recherche collaborative de notre équipe.

iv

Abstract

Our society has become more dependent on software-intensive systems, such as Infor-
mation and Communication Technologies (ICTs) systems, to perform their daily tasks
(sometimes critical). However, in most cases, organizations and particularly small ones
place limited value on information and its security. In the same time, achieving security
in such systems is a difficult task because of the increasing complexity and connectivity
in ICT development. In addition, security has impacts on many attributes such as open-
ness, safety and usability. Thus, security becomes a very important aspect that should be
considered in early phases of development. In this work, we propose an approach in order
to secure ICT software architectures during their development by considering two visions
to formulate security statements using the negative view, as the study of threats (e.g.,
usurpation) and positive view as the study of the security objectives (e.g., confidentiality).
The contributions of this work are threefold: (1) an integrated design framework for the
specification and analysis of reusable (formal) model libraries for secure software architec-
tures; (2) a novel model-based methodology for developing secure software architecture
by reuse; and (3) a set of supporting tools.

The approach associates Model-Driven Engineering (MDE) and formal techniques to
design a set of modeling languages for specifying and analyzing architecture and property
models which allows reuse of capitalized security-related know-how. The results are pro-
vided as two complementary artifacts : (a) a process of development of reusable formal
model libraries for the specification and verification of security threats and objectives by
a security expert; and (b) a process of secure architectural design and analysis by an ar-
chitect reusing the libraries specified in the process (a). Process (a) includes the following
activities: (1) the formal specification of the security threats and objectives as the proper-
ties of a model using technology-independent specification language; (2) the interpretation
of the resulted model libraries in a tooled formal language; and (3) the definition of secu-
rity policies as abstract security countermeasures to ensure security properties. Process
(b) includes the following activities: (1) security analysis of a concrete architecture model
to verify the security requirements and identify security issues reusing the property mod-

v

els; (2) selection and integration of policy models to mitigate the identified security issues;
and (3) the generation of feedback as reports on the software architecture model and its
security (residual threats, objectives validation, etc.).

To validate our work, we have explored a set of representative threats extracted from
the STRIDE classification and a set of representative security objectives extracted from
the CIAA classification in the context of component-based architecture and message pass-
ing communication. As part of the assistance for the development of secure architectures,
we have implemented a tool chain based on Eclipse platform to support the different ac-
tivities of our approach based on a set of modeling languages and existing formal tooled
languages. The assessment of our work is presented via a simple example of a university
library website from OWASP and a gateway application for smart-meter system from our
previous collaborative research project.

vi

Remerciements

Une importante étape pour moi se finit aujourd’hui, je souhaite donc tout d’abord re-
mercier tous ceux qui ont rendu possible ou contribué, d’une manière ou d’une autre, à
l’achèvement de ce manuscrit.

En premier lieu, je tiens à remercier très chaleureusement mon directeur de thèse
Brahim Hamid, sans lequel je n’aurais probablement jamais envisagé de réaliser un doc-
torat. De plus, un grand merci pour m’avoir partagé le gout de la recherche, et fourni un
soutien permanent et de nombreux conseils pendant toutes ces années.

Je tiens aussi à remercier Jean-Paul Bodeveix et Mamoun Filali Amine pour les nom-
breux retours et discussions dans le cadre du projet ISARP qui ont été précieux et clés
aux succès et achèvement de ce manuscrit. Je remercie aussi Jason Jaskolka pour l’aide
apporter et la collaboration. Nos multiples échanges ont été vraiment stimulants et
enrichissants. Je remercie toutes les personnes que j’ai côtoyées à l’IRIT (chercheurs,
secrétaires, enseignants, et techniciens) qui ont contribué à un environnement agréable.

Je souhaiterais ensuite remercier Régine Laleau et Carsten Rudoph, pour l’intérêt
qu’ils ont apporté à mon travail en acceptant d’être rapporteurs de cette thèse. Je les
remercie pour leurs remarques, questions, et perspectives très intéressantes.Je voudrais
également remercier Jean-Paul Bodeveix pour avoir accepté de présider le jury de me sou-
tenance. Je remercie également Jean-Paul Bodeveix, Samia Bouzefarne, Brahim Hamid,
Jason Jaskolka, Régine Laleau, et Carsten Rudoph, pour leurs questions et commentaires
stimulant lors de la soutenance.

Finalement, merci, à toutes les personnes extérieures qui m’ont apporté leurs soutiens
durant ces années. Je pense tout d’abord, à ma famille pour leur soutien indéfectible.
Mais aussi, à mes amis qui ont contribué tous les jours à ma bonne humeur. Finalement,
ma chatte, toujours présente à la fin d’une dure journée de travail.

vii

viii

Acknowledgements

An important milestone for me comes to an end today, so, first of all, I would like to thank
everyone who has made possible or contributed, in one way or another, to the completion
of this manuscript.

First of all, I would like to warmly thank my thesis director Brahim Hamid, without
whom I would probably never have considered doing a doctorate. In addition, a big thank
you for sharing my taste for research, and providing ongoing support and advice during
all these years.

I would also like to thank Jean-Paul Bodeveix and Mamoun Filali Amine for the much
feedback and discussions within the framework of the ISARP project which were invaluable
and key to the success and completion of this manuscript. I also thank Jason Jaskolka
for the help and collaboration. Our multiple exchanges have been truly stimulating and
enriching. I would like to thank all the people I met at IRIT (researchers, secretaries,
teachers, and technicians) who have contributed to an environment pleasant.

I would then like to thank Régine Laleau and Carsten Rudoph, for the interest they
have shown in my work by accepting to be rapporteurs for this thesis. I thank them for
their remarks, questions, and very interesting perspectives. I would also like to thank
Jean-Paul Bodeveix for agreeing to chair the jury for my defense. I also thank Jean-Paul
Bodeveix, Samia Bouzefarne, Brahim Hamid, Jason Jaskolka, Régine Laleau, and Carsten
Rudoph, for their stimulating questions and comments during the defense.

Finally, thank you to all the outside people who have supported me during these years.
First of all, I think of my family for their unwavering support. But also, to my friends
who contributed every day to my good mood. Finally, my cat, always present at the end
of a hard day’s work.

ix

x

Table of contents

Table of contents xi

List of figures xvii

List of tables xxi

List of listings xxiii

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 5
1.3 Research objectives . 5
1.4 Contributions . 6
1.5 Publications . 10
1.6 Thesis outline . 13

2 Technical frameworks 15
2.1 Introduction . 15
2.2 Software systems engineering . 16
2.3 Component based development . 16
2.4 Model-based engineering (MBE) . 18

2.4.1 Models . 19
2.4.2 Model-Driven Engineering (MDE) 20
2.4.3 Domain Specific Modeling Language (DSML) 20

2.5 Incorporating security in system and software engineering 21
2.5.1 Generic Software Systems Security Engineering 22
2.5.2 Model-Based Software Systems Security Engineering 23

2.6 Formal techniques for specification and verification 24

xi

TABLE OF CONTENTS

2.6.1 Logics . 25
2.6.1.1 Finite State machine (FSM) 25
2.6.1.2 First order logic (FOL) . 26
2.6.1.3 Modal Logic (ML) . 28

2.6.2 Formal Techniques . 30
2.6.2.1 Alloy . 31
2.6.2.2 Coq . 36

2.7 Development environment . 39
2.7.1 Eclipse Modeling Framework . 39
2.7.2 Alloy Analyser . 41
2.7.3 Coq IDE . 41

2.8 Introduction to the case studies . 42
2.8.1 College library web application . 42
2.8.2 Smart meter gateway . 43

3 Approach 45
3.1 Introduction . 45
3.2 Conceptual vision . 46
3.3 Methodology for the creation of a design and analysis framework 47
3.4 Supporting the approach within SDLC . 48
3.5 Conclusion . 49

4 Software architecture 51
4.1 Introduction . 51
4.2 Related work . 52
4.3 Methodology for the creation of a design and analysis framework 54
4.4 Supporting the approach within the SDLC 55
4.5 Software architecture meta-model . 56
4.6 Scenario view . 60

4.6.1 Logical specification . 60
4.6.2 Communication behavior semantics 62
4.6.3 Communication properties specification 64

4.7 Formal specification and analysis in Alloy 66
4.7.1 Formalizing the software architecture meta-model 66
4.7.2 Formalizing and verifying connectors and their properties 69

4.8 Tool Support . 76

xii

TABLE OF CONTENTS

4.8.1 Modeling framework block . 77
4.8.2 Application development block . 77

4.9 Conclusion . 79

5 Security threats 81
5.1 Introduction . 81
5.2 Related work . 82
5.3 Methodology for the creation of a design and analysis framework 84
5.4 Supporting security-by-design within the SDLC 86
5.5 Property view . 87

5.5.1 Logical specification . 88
5.5.2 STRIDE security threats . 90

5.6 Formal specification and analysis in Alloy 95
5.6.1 Formalizing the negative perspective of the property meta-model . . 95
5.6.2 STRIDE security threats . 97

5.7 Tool support . 105
5.7.1 Modeling framework block . 106
5.7.2 Application development block . 106

5.8 Conclusion . 109

6 Security objectives 111
6.1 Introduction . 111
6.2 Related work . 112
6.3 Methodology for the creation of a design and analysis framework 114
6.4 Supporting security-by-design within the SDLC 115
6.5 Property view . 117

6.5.1 Logical specification . 117
6.5.2 CIAA security objectives . 118

6.6 Formal specification and analysis in Alloy 120
6.6.1 Formalizing the positive perspective of the property meta-model . . 120
6.6.2 CIAA security objectives . 121

6.7 Formal specification and analysis in Coq 127
6.7.1 Formalizing the software component meta-model and properties

meta-model . 127
6.7.2 Confidentiality in Coq . 130

6.8 Tool Support . 137

xiii

TABLE OF CONTENTS

6.8.1 Automated formal tool : Alloy . 137
6.8.1.1 Modeling framework block 138
6.8.1.2 Application development block 139

6.8.2 Proof assistant : Coq . 142
6.8.2.1 Modeling framework block 142
6.8.2.2 Application development block 143

6.9 Conclusion . 144

7 Evaluation of the contributions 147
7.1 Introduction . 147
7.2 Case study . 147

7.2.1 Expressing the architecture of the smart meter gateway 148
7.2.2 Security analysis . 149

7.2.2.1 Negative perspective (security threats) 149
7.2.2.2 Positive perspective (security objectives) 154

7.3 Discussions . 157
7.3.1 Applications of the proposed approach 158
7.3.2 Generalization of the proposed approach 158
7.3.3 Tool support : automated tool and proof complementarity 159

8 Conclusion & future works 161
8.1 Summary and contributions . 161
8.2 Limitations and future works . 163
8.3 Perspectives . 166

Bibliography 169

Appendices 180

A Architecture : Additional communication paradigms RPC & DSM 183
A.1 Scenario view . 183

A.1.1 Communication behavior semantics 183
A.1.1.1 Remote procedure call . 183
A.1.1.2 Distributed shared memory 185

A.1.2 Communication paradigms properties specification 187
A.1.2.1 Remote procedure call . 187
A.1.2.2 Distributed shared memory 187

xiv

TABLE OF CONTENTS

A.2 Meta-Model . 189
A.2.1 Formalizing the software architecture metamodel 189
A.2.2 Formalizing and verifying connectors and their properties 189

A.2.2.1 Remote procedure call . 189
A.2.2.2 Distributed shared memory 193

A.2.3 Building the concrete architecture for the illustrative example . . . 197

B Coq confidentiality 201
B.1 Introduction to Coq tatics . 201
B.2 Proof . 207

Glossary 227

xv

TABLE OF CONTENTS

xvi

List of figures

1.1 Conceptual vision . 3
1.2 Notions and relationships . 4

2.1 Component-Based Software Development Process and Used Artifacts [10] . 18
2.2 Modeling pyramid of the OMG . 19
2.3 States of turnstile . 26
2.4 An Alloy instance obtained from Listing 2.2 34
2.5 Eclipse Modeling Framework . 40
2.6 Alloy Analyzer . 41
2.7 Coq IDE . 41
2.8 A college library web application example 42
2.9 A UML description of the high-level architecture of the college library web

application example . 43
2.10 Actors and roles in the smart meter gateway scenario [18] 44

3.1 Conceptual vision . 46
3.2 Methodology for the creation of a design and analysis framework 47
3.3 The proposed approach within the Royce iterative waterfall SDLC 49

4.1 Overview of the proposed approach . 54
4.2 The proposed architecture design approach within the Royce iterative wa-

terfall SDLC . 56
4.3 Component-port-connector meta-model . 57
4.4 States of a client (resp. server) for sending (resp. receiving) messages . . . 62
4.5 States of a MPS connector . 63
4.6 States of a client (resp. server) for sending (resp. receiving) messages . . . 64
4.7 States of a MPS FIFO connector . 64
4.8 Tool support architecture and artifacts of the approach 76

xvii

LIST OF FIGURES

4.9 Transformations supporting the generation of an Alloy from a DSL model
using Xtend . 78

4.10 Definition of the DSL model and functional requirements for the college
library web application . 78

5.1 Methodology for the creation of a design and analysis framework 85
5.2 The proposed threat modeling approach within the Royce iterative water-

fall SDLC . 87
5.3 Property meta-model with mitigate relationships 88
5.4 Spoofing counterexample provided by the Alloy Analyzer 98
5.5 Tool support architecture and artifacts of the approach 105
5.6 Definition of the security requirements using threats modeling for the col-

lege library web application . 107
5.7 Transformations supporting the generation of an Alloy for threats from a

DSL model using Xtend . 108
5.8 Threat report showing the identified threats for the college library web

application . 108
5.9 Security policy report showing the suggested security requirements to mit-

igate the identified security threats for the college library web application
(Figure 5.8) . 109

6.1 The proposed approach development process for security objectives 115
6.2 The proposed approach within the Royce iterative waterfall SDLC 116
6.3 Property meta-model with satisfy relationships 117
6.4 Confidentiality counterexample provided by the Alloy Analyzer 122
6.5 Tool support for security objectives using Alloy architecture and artifacts

of the approach . 138
6.6 Definition of the security requirements using security objectives modeling

for the college library web application . 140
6.7 Transformations supporting the generation to Alloy for security objectives

from a DSL model using Xtend . 140
6.8 Objective report showing the violated and satisfied security objectives for

the college library website application . 141
6.9 Policy report showing the policies applied to fulfill security objectives for

the college library website application . 141
6.10 Tool support for security objectives using Coq architecture and artifacts of

the approach . 142

xviii

LIST OF FIGURES

6.11 Transformations supporting the generation to Coq for security objectives
from a DSL model using Xtend . 144

7.1 Threat report (Detected threats in the Gateway application) 152
7.2 Policy report (Policies applied to mitigate the detected threats in the Gate-

way application) . 153
7.3 Objective report (Violated and satisfied objectives in the Gateway appli-

cation) . 156
7.4 Policy report (Policies applied to satisfy the objectives in the Gateway

application) . 157

A.1 States of a client for invocation/receiving reply messages 184
A.2 States of a RPC connector . 184
A.3 States of a server for receiving invocation/sending reply message 185
A.4 States of a client for writing and reading a shared variable 186
A.5 States of the Central Memory Manager (server) receiving reading/writing

calls and returning the corresponding reply messages 187

xix

LIST OF FIGURES

xx

List of tables

1.1 Research objectives and results . 9

2.1 State-transition table of turnstile . 25

xxi

LIST OF TABLES

xxii

List of listings

2.1 Module declaration & importation example in Alloy 32
2.2 Example of signatures & fields declaration in Alloy 33
2.3 Fact declaration example in Alloy . 34
2.4 Example of an alternative way to declare a fact on a given signature 34
2.5 Function declaration example in Alloy . 35
2.6 Predicate declaration example in Alloy . 35
2.7 Assertion declaration example in Alloy . 35
2.8 Commands declaration example in Alloy 36
2.9 Coq example propositions . 36
2.10 Coq example inductive predicate . 37
2.11 Coq example definition . 37
2.12 Coq example basic type . 37
2.13 Coq example inductive type . 37
2.14 Coq example function over inductive type 37
2.15 Coq example simple assumptions . 38
2.16 Coq tatic intro . 38
4.1 Software architecture meta-model in Alloy 67
4.2 Message passing connector . 69
4.3 Message passing with FIFO ordering connector 70
4.4 Message passing communication . 71
4.5 Building a concrete software architecture of the college library web appli-

cation example in Alloy . 73
4.6 Instantiate Connectors of a web application example in Alloy 74
4.7 Using previously verified MPS properties to specify functional requirement

of a web application example in Alloy . 75
5.1 Message data and example of action in Alloy 96
5.2 Axiom in Alloy . 96
5.3 Property view concepts in Alloy . 97

xxiii

LIST OF LISTINGS

5.4 Detection of spoofing . 98
5.5 spoofProof property . 99
5.6 Detection of tampering . 99
5.7 tamperProof property . 100
5.8 Detection of repudiation . 100
5.9 repudiationProof property . 101
5.10 Detection of information disclosure . 102
5.11 informationDisclosureProof property . 102
5.12 Detection of denial of service . 103
5.13 staleProof property . 103
5.14 Detection of elevation of privilege . 104
5.15 EoPProof property . 104
6.1 Confidentiality property . 121
6.2 Confidentiality policy . 122
6.3 Integrity property . 123
6.4 Integrity policy . 124
6.5 Availability property . 124
6.6 Availability policy . 125
6.7 Authenticity property . 126
6.8 Authenticity policy . 126
6.9 Coq metamodel . 128
6.10 Coq atom & formula specification . 128
6.11 Interpretation of logical connectives and modal operators in Coq 129
6.12 Coq behavior satisfaction . 129
6.13 Coq Axioms & Lemmas . 130
6.14 Coq PayloadConfidentiality property definition 131
6.15 Coq restrictiveGetPld policy definition . 131
6.16 Coq confidentiality proof step 1 . 132
7.1 A smart meter gateway application using our DSL Model 148
7.2 Threat detection on consumption data asset 150
7.3 Generated Alloy model for the threat detection on consumption data asset 151
7.4 Specification of policy of the gateway application for mitigate threats . . . 152
7.5 Objective satisfaction on consumption data asset 154
7.6 Generated Alloy model for the objective validation on consumption data

asset . 155

xxiv

LIST OF LISTINGS

7.7 Specification of policy of the gateway application for security objectives
validation . 156

A.1 Remote procedure call connector . 189
A.2 Remote procedure call communication . 191
A.3 Distributed shared memory connector . 193
A.4 Distributed shared memory . 194
A.5 Building a concrete software architecture of the college library web appli-

cation example in Alloy . 197
A.6 Instantiate Connectors of a web application example in Alloy 198
A.7 Using previously verified RPC properties to specify a functional require-

ment of a web application example in Alloy 199
A.8 Using previously verified MPS properties to specify functional requirement

of a web application example in Alloy . 199
A.9 Using previously verified DSM properties to specify a functional require-

ment of a web application example in Alloy 200
B.1 Coq tatic intro . 201
B.2 Coq tatic unfold . 202
B.3 Coq tatic apply . 203
B.4 Coq tatic destruct (and) . 203
B.5 Coq specialize simpl . 204
B.6 Coq generalize simpl . 204
B.7 Coq tatic subst . 205
B.8 Coq tatic rewrite . 205
B.9 Coq tatic simpl . 206
B.10 Coq tatic clear . 206
B.11 Coq tatic auto . 207
B.12 Coq PayloadConfidentiality property definition 207
B.13 Coq restrictiveGetPld policy definition . 207
B.14 Coq confidentiality proof step 1 . 209
B.15 Coq confidentiality proof step 2 . 210
B.16 Coq confidentiality proof step 3 . 212
B.17 Coq confidentiality proof step 4 . 213
B.18 Coq confidentiality proof step 5 . 215
B.19 Coq confidentiality poof step 6 . 217
B.20 Coq confidentiality proof step 7 . 219
B.21 Coq confidentiality proof step 8 . 220

xxv

LIST OF LISTINGS

B.22 Coq confidentiality proof step 9 . 222
B.23 Coq confidentiality proof step 10 . 223

xxvi

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Problem statement . 5

1.3 Research objectives . 5

1.4 Contributions . 6

1.5 Publications . 10

1.6 Thesis outline . 13

1.1 Context

The shift from traditional computer systems towards the Internet of Things (IoT), i.e.,
devices connected via the Internet, Machine-to-Machine communication (M2M), wire-
less communication or other interfaces requires a reconsideration of complex software-
dependent and distributed systems engineering processes. In fact, this reconsideration
introduces new types and levels of risks, including those inherited from the underlying
technologies like communication, virtualization, and containerization. This is especially
true for industrial systems which exist in many use cases, and systems using web appli-
cations due to the recent growth of more applications in cloud-based computing systems.
Many of these systems belong to critical infrastructure, on which other economic and so-
cial aspects are based. A comprehensive understanding of modern communication systems
and technologies and their implications on the underlying critical infrastructure [23] is the
foundation for comprehensive rigorous systems engineering facing strong non-functional

1

CHAPTER 1. INTRODUCTION

requirements such as security [109, 141]. In this dissertation, we take this need towards
software engineering for distributed software systems, focusing on the problem of inte-
grating communication styles at the level of architecture design to foster reuse.

When we study distributed systems, we often use models to denote some abstract rep-
resentation of a distributed system. To encode distributed computing (programs) in such
systems, we use a common means of communication [23], where system components have
only local vision of the system and interact only with their neighbors with explicit com-
munication models like message passing, remote procedure calls, and distributed shared
memory. These communication models are common to most distributed systems. The
program executed at each node consists of a set of variables (state) and a finite set of
actions. A component can write to its own variables and interact with its neighbors follow-
ing a specific communication style. In our context, we model software architectures with
message passing, remote procedure calls, and distributed shared memory. These commu-
nication styles capture those which we expect the architectural description to adhere. The
aim of this modeling and verification is to check if the architecture models satisfy all the
desired properties such as security properties, and do not hold any undesired properties
such as deadlock and starvation.

Security risk assessment is usually done by a security risk analyst in order to verify
the actual status of an information system that is already deployed. Risk assessment
is performed by a set of meetings between security experts and persons responsible for
the information system. The main goal is to produce a report with actual security risks
targeting the system, the security strategy to adopt and the security measures to deploy
in order to achieve this strategy.

The first issue here is that developers are constrained by the functional requirements
of the information system that can hardly change because it would mean choosing a new
software system which is very expensive. In order to solve the first problem, security must
be thought about at early stages of the system development. In our work, we focus on
the architecture development stage where design decisions are still flexible. We employ
Model-Driven Engineering (MDE) [123] and attempt to add more formality to improve
parts of the system design.

The second issue is related to the fact that architects and developers usually have
basic knowledge in security engineering but lack expertise and best practices to apply the
correct recommendations issued by security risk assessments (if any). One solution is to
use reusable models e.g., policies, patterns.

The work in this thesis is part of our research team effort to promote the use of model-
and pattern-based engineering approach to improve the design, implementation, config-

2

1.1. CONTEXT

uration and deployment of multi-concerns systems [42]. In the context of our work, we
used a similar definition of a concern about an architecture as [119] : a concern is a
requirement, a constraint or an objective that a stakeholder has for that architecture.
Ultimately, the goal is to improve the Pattern-Based System and Software Engineering
(PBSE) framework [46] considering security and safety requirements within software ar-
chitectures built on top of the reusable models described in this thesis. Capturing and
providing expertise by the way of security patterns has become an area of research in
the last years. Security can be captured within patterns that provide reusable generic
solutions for recurring security problems, here dealing with architectural problems. Re-
cently a complete catalog of security patterns has been introduced by Fernandez [32]. We
plan to transform our Pattern-Based System and Software Engineering (PBSE) pattern
modeling concepts to formal specifications to ensure semantic validation.

Conceptual model for system

architecture and concerns

DSL for architecture
 & concerns design

Semantic domain

support

Tooled semantic domain

Theoretical level

Development level

formalize

formalize

(C
on

ce
rn

s)

Figure 1.1: Conceptual vision

As visualized in Figure 1.1, the conceptual vision is composed of two levels:

• Theoretical level: Creation of a conceptual model of a system and concerns and
the semantics. A conceptual model of a system and concerns provides a common
understanding of all concepts employed in the development level, while the seman-
tic domain ensures a precise description of the addressed problems and solutions
approaches. A conceptual model of a system and concerns should capture the main
concepts and relationships to describe the concerns within the system in the con-
text of different standards and domain-specific practices. A semantic domain should
capture the concerns as desired properties of the system. At this level, the concep-
tual model and the semantic domain are described using technology-independent
formalism.

• Development level: Creation of a tooled methodology for the system architect to

3

CHAPTER 1. INTRODUCTION

support the design and analysis activities during the processes of building software
architecture and concerns from the conceptual modeling and the semantic domain.
At this level, we propose using a well-known approach in MDE: a DSML for the
creation of the design environment and existing tooled formal languages for the
analysis environment.

security
negative

view

security
solution

security
positive
view Objectives Threats

Requirements/ Concerns

Policies

Patterns

realize

derivate derivate

satisfy mitigate

obj1
T1
T2
T3

Analysis
(problem space)

Architecture Design
(solution space)

Mechanisms
compose

validate

Part of the dissertation

Figure 1.2: Notions and relationships

Figure 1.2, positions the identified notions for this vision and highlights the parts
which are studied in this dissertation. Globally, the goal of the approach is to validate
set of security requirements/concerns. The requirements are given as inputs i.e., we don’t
elicit new requirements. Note, however, that the set of requirements/concerns are defined
is another work, e.g., validating their completeness is out of scope of our work. We
formalize objectives and threats as an implementation of the system requirements or part
of them at architecture level through two views: (1) the security positive view where the
concerns are specified as security objectives, i.e., a property that must be satisfied in the
architecture design; and, (2) the security negative view where the concerns are specified
as security threats, i.e., a property that must never be satisfied in the architecture design.
Note that two views could be used separately or complementary. This complementary
would be exploited by defining association between threats and objectives. Intuitively,

4

1.2. PROBLEM STATEMENT

a threat could violate an objective. Fulfilling an objective could protect against one
or multiple threats. Then, policies, as abstract mechanisms, are specified as treatment
for the detected issues. Policies mitigate threat(s) for the negative view or/and satisfy
objective(s) for the positive view. Finally, the concrete mechanism would be proposed
and verified to realize the policy, and, patterns would be defined as a composition of
mechanisms. This way we obtain a set of verified patterns offering solutions for recurring
security problems.

1.2 Problem statement

Based on the previous discussion, we specify our general research problem coming from
the lack of methodological tool support of both the system architecture and security.

Define and assess a framework for the development of system architec-
ture and security using reusable models. More specifically, this work aims
to provide formalisms, techniques, methods, and tools that enable the de-
sign of secure system architectures in a less complex and safer manner, in
the context of future automated security-by design for the development of
distributed systems.

1.3 Research objectives

Taking into account the previous discussion, we specify our research problem as an overall
research objective of this thesis:

Propose an integrated approach for the specification, detection, and treat-
ment of security concerns to support secure systems engineering at early
stages of development using reusable models with tool support.

We present a model-based approach for developing secure software systems that em-
ploys reusable models to represent communication solutions, security issues, and security
solutions. Thereby, this approach promotes: expert knowledge capitalization by allowing
architects to reuse previously developed and verified models; and simpler and safer de-
sign for secure software system architecture through the combination of MDE and formal
methods (model reuse and automatic validation).

Decomposing the overall research objective, we formulate the following top-level re-
search goals:

5

CHAPTER 1. INTRODUCTION

Research objective 1.

RO1 . Define an approach for the development and formal verification of reusable models
for software system architecture and security engineering.

Research objective 2.

RO2 . Develop an approach towards software system architecture and security engineering
using reusable models.

Research objective 3.

RO3 . Build a tool suite to support the proposed approaches to enable their practical
adoptions.

1.4 Contributions

The contributions of this work are fourfold: (1) a development framework for the speci-
fication and the analysis of reusable formal models, (2) a design framework for the spec-
ification and analysis of secure software architectures, (3) a novel reusable formal model
based methodology, and (4) a support tool.

Here, we map the contributions of this thesis to the research objectives formulated
earlier.

RO1 is addressed with the following contributions:

• C1 . The creation of a design and analysis framework for the development of reusable
formal models for architecture and security.

• C2 . Software architecture and security meta-model

– C2.1 . Component based architecture meta-model : we propose a meta-model
to capture representative software concepts (component, port, connector, ...)
and communication styles (MPS, RPC, ...) commonly used in distributed
system architecture modeling.

– C2.2 . Property meta-model for security: we extend the meta-model from
C2.1 with security concepts for describing threats, objectives, policies and
their relationships in the form of categories to build property model libraries
for reuse.

6

1.4. CONTRIBUTIONS

• C3 . Specification of the architecture model and properties in a technology-independent
formalism (FoL and Modal logic).

– C3.1 . Component based architecture model : we define a logical specification
of the architecture component model from C2.1 .

– C3.2 . Property model for security: we extend the specifications from C3.1
with security concepts for describing threats and objectives as properties of the
system architecture model.

• C4 . Interpretation of the proposed architecture and property meta-model in tooled
formal languages (Alloy and Coq).

– C4.1 . Component based architecture formal model : we define a formal inter-
pretation of the meta-model from C2.1 and C3.1 .

– C4.2 . Property formal model for security: we define a formal interpretation of
the meta-model from C2.2 and C3.2 , extending the formal model from C4.1
with security concepts (threats, objectives, policies and their relationships) as
properties of the system architecture model and provide them in the form of
reusable formal model libraries.

• C5 . Creation of verified formal model libraries for reuse in the context of the
component & MPS based architecture model

– C5.1 . Communication model libraries: we developed a set of reusable con-
nector models as a reusable communication model libraries, including Message
Passing System (MPS) communication.

– C5.2 . STRIDE security threats: we developed a set of threat models, cap-
turing representative security threats extracted from the Microsoft STRIDE
classification, and provide them as a reusable formal model library.

– C5.3 . CIAA security objectives: we developed a set of security objective
models, capturing representative security objectives extracted from the CIAA
classification, and provide them as a reusable formal model library.

– C5.4 . Security policies: we developed a set of policy models capturing abstract
security mechanisms to be used as a reusable model library to mitigate security
threats from C5.2 or satisfy security objectives from C5.3 .

RO2 is addressed with the following contributions:

7

CHAPTER 1. INTRODUCTION

• C6 . The design of a novel approach for the specification and analysis of secure
software architectures using reusable (formal) models.

– C6.1 . Design and analyses of secure software architecture by reuse: these
property specifications are included as part of security requirements libraries,
so that they can be reused in other concrete instantiations of systems built using
component-port-connector architectures and message passing communication.
For instance, we provided a set of facilities to type the corresponding software
architecture model elements.

– C6.2 . Integration in existing SDLC : we studied the support of existing SDLC
providing a set of guidelines as a supplement activities in the requirements
specification and architecture design phases.

• C7 . Demonstration: we illustrate our research methodology through a simple ex-
ample of a college library web application system. In addition, to validate our work,
we apply the proposed approaches in a case study of Smart Meter Gateway.

RO3 is addressed with the following contributions:

• C8 . MDE tool chain for the design: we implemented a tool suite using the Eclipse
platform to support the proposed approaches from RO1 and RO2 . We provides
features to model the software architecture model (C2.1), the reusable property
model libraries (C2.2), the reuse of these libraries, the generation of the interpreta-
tion of these models in a tooled formal language and the generation of new artefacts
related to the security analysis of the architecture model.

• C9 . Automated analysis: we propose to use existing tooled formal languages (Alloy
and Coq) to support the design and analysis of a secure software architecture models,
including the architecture models (C4.1) and property model libraries (C4.2 , C5).
The results of the analysis are then used by the MDE tool chain for the generation of
new artefacts, including feedback (detection of security issues, solutions suggestion)
and validation artefacts (threats report, objectives report, policies report).

8

1.4. CONTRIBUTIONS

A summary of the relations between contributions and the research objectives they
fulfil are drawn in Table 1.1. We also associate to each contribution the chapter in which
it is presented in this manuscript and if applicable some results as they are published in
journals and conferences.

Research Objectives Contributions Chapters Publications

RO1

C1 Chapter 3, 4, 5, 6 [114, 115, 116, 117, 113]

C2.1 Chapter 4 [114, 115]

C2.2 Chapter 5, 6 [113, 116, 117]

C3.1 Chapter 4 [114, 115]

C3.2 Chapter 5, 6 [113, 116, 117]

C4.1 Chapter 4 [114, 115]

C4.2 Chapter 5, 6 [113, 116, 117]

C5.1 Chapter 4 [114, 115]

C5.2 Chapter 5 [116, 117]

C5.3 Chapter 6 [113]

C5.4 Chapter 5, 6 [113, 116, 117]

RO2
C6.1 Chapter 3, 4, 5, 6 [114, 115, 116, 117, 113]

C6.2 Chapter 3, 4, 5, 6 [117, 113]

C7 Chapter 4, 5, 6, 7 [114, 115, 116, 117, 113]

RO3
C8 Chapter 4, 5, 6 [115, 116, 117]

C9 Chapter 4, 5, 6 [115, 116, 117]

Table 1.1: Research objectives and results

9

CHAPTER 1. INTRODUCTION

1.5 Publications

This section presents published papers related to the thesis. The publications are divided
into two categories: (i) papers that are fundamental for the thesis contributions; (ii) papers
that are related to the thesis. In the following, we list and provide concise overviews of
those publications in chronological order.

In addition to the Quartile SJR Scimago (http://www.scimagojr.com), the impact fac-
tor measurement (Impact Factor), we use the Core classification (http://www.core.edu.au)
to indicate the known rank of publications..

Fundamental publications

• Paper A. [114] Quentin Rouland, Brahim Hamid, and Jason Jaskolka. “For-
malizing reusable communication models for distributed systems architecture”. In:
International Conference on Model and Data Engineering (MEDI). Springer. 2018,
pp. 198–216.
doi: https://doi.org/10.1007/978-3-030-00856-7 13.
Summary: In this article, we aim at specifying software architecture of distributed
systems using an approach combining semi-formal and formal languages to build
reusable model libraries to represent communication solutions. We provide a set
of reusable connector libraries within a set of properties to define architectures for
systems with explicit communications models like message passing and remote pro-
cedure calls that are common to most distributed systems.

• Paper B. [113] Quentin Rouland, Brahim Hamid, Jean-Paul Bodeveix, et al.
“A Formal Methods Approach to Security Requirements Specification and Verifica-
tion”. In:2019 24th International Conference on Engineering of Complex Computer
Systems (ICECCS) (Rank A). IEEE. 2019, pp. 236–241.
doi: https://doi.org/10.1109/ICECCS.2019.00033.
Summary: In this work, we propose an integrated approach for security require-
ment specification and treatment during the software architecture design time. The
general idea of the approach is to: (1) specify security requirements as properties
of a modelled system in a technology-independent specification language; (2) imple-
ment the developed model in a suitable language with tool support for requirement
satisfaction through model verification; and (3) suggest a set of security policies to
constrain the operation of the system and to guarantee the security properties. To
validate our work, we explore a set of representative security properties from cate-

10

1.5. PUBLICATIONS

gories based on CIA classification in the context of secure component-based software
architecture development.

• Paper C. [115] Quentin Rouland, Brahim Hamid, and Jason Jaskolka. “For-
mal specification and verification of reusable communication models for distributed
systems architecture”. In: Future Generation Computer Systems (Rank A,
SCIMAGO SJR Q1, Impact Factor: 5.768) 108 (2020), pp. 178–197.
doi: https://doi.org/10.1016/j.future.2020.02.033.
Summary: In this article, we build reusable model libraries to specify and verify
communication styles for modeling software architectures of distributed systems.
First, we propose a meta-model to describe high-level concepts of architecture in
a component–port–connector fashion focusing on different communication styles.
Then, we formalize those concepts and their semantics following some properties
(specifications) to check architectural conformance. To validate our work, using
a developed tool to support our approach, we provide a set of reusable connector
libraries within a set of properties to define architectures for systems with explicit
communication models that are common to most distributed systems including mes-
sage passing, remote procedure calls, and distributed shared memory.

• Paper D. [116] Quentin Rouland, Brahim Hamid, and Jason Jaskolka. “Reusable
Formal Models for Threat Specification”. In: ICSR 2020: Reuse in Emerging Soft-
ware Engineering Practices (Rank B). Springer. 2020, pp. 52–68.
doi: https://doi.org/10.1007/978-3-030-64694-3 4.
Summary: In this work, we propose an integrated approach for threat specifi-
cation, detection, and treatment in component-based software architecture models
via reusable security threat and requirement formal model libraries. Our solution
is based on metamodeling techniques that enable the specification of the software
architecture structure and on formal techniques for the purposes of precise speci-
fication and verification of security aspects as properties of a modeled system. In
addition, we use model-driven engineering techniques for the development of a tool
suite to support our approach.

• Paper E. [117] Quentin Rouland, Brahim Hamid, and Jason Jaskolka. “Spec-
ification, detection, and treatment of STRIDE threats for software components:
Modeling, formal methods, and tool support”. In: Journal of Systems Architecture
(Rank B, SCIMAGO SJR Q2, Impact Factor: 2.552) (2021).
doi: https://doi.org/10.1016/j.sysarc.2021.102073.

11

CHAPTER 1. INTRODUCTION

Summary: In this paper, we propose integrated approach for threat detection
and treatment by means of security requirements, during the software architecture
design time. The general idea of the approach is to: (1) specify threats as prop-
erties of a modeled system in a technology-independent specification language; (2)
express conditions that reveal these threats in a suitable language with automated
tool support for threat detection through model verification; and (3) suggest a set of
security requirements to protect against detected threats. To validate our work, we
explore a set of representative threats from categories based on Microsoft’s STRIDE
threat classification in the context of secure component-based software architecture
development.

Publications related to the thesis

• Paper F. [47] Brahim Hamid, Quentin Rouland, and Jason Jaskolka. “Dis-
tributed Maintenance of a Spanning Tree of k-Connected Graphs”. In: 2019 IEEE
24th Pacific Rim International Symposium on Dependable Computing (PRDC)
(Rank B). IEEE. 2019, pp. 209–217.
doi: https://dx.doi.org/10.1109/PRDC47002.2019.00052.
Summary: This work is devoted to the problem of spanning trees maintenance in
the presence of crash failures in a distributed environment using only local knowl-
edge. Using a pre-constructed spanning tree of a k-connected graph, we present a
protocol to maintain a spanning tree in the presence of k-1 consecutive failures. In
addition, we investigate the possible specification and verification of the presented
algorithm using Alloy as a tooled formal language for an implementation of this
protocol in the asynchronous message passing model.

Distinctions

1. Best paper award. Paper D. [116] “Reusable Formal Models for Threat Speci-
fication”. ICSR 2020.

12

1.6. THESIS OUTLINE

1.6 Thesis outline

The outline of the dissertation is as follows. Chapter 2 presents the technical frameworks
used in of our work. Chapter 3 is dedicated to present a methodology for the creation of a
design and analysis framework to assist software architect in the design process. Chapter 4
proposes a component-based software architecture design and analysis framework as a
building block to express the security concerns. Chapter 5 presents a security threats
design and analysis framework. Chapter 6 introduces a security objectives design and
analysis framework. An illustration of the use of the aforementioned frameworks within a
case study of a Smart Meter Gateway and discussion on the feasibility and the potential
applications of the proposed approach, as well as the potential for its generalization and
extension are presented in Chapter 7. Finally, Chapter 8 concludes the dissertation and
proposes some future works and perspectives.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Technical frameworks

Contents
2.1 Introduction . 15

2.2 Software systems engineering 16

2.3 Component based development 16

2.4 Model-based engineering (MBE) 18

2.5 Incorporating security in system and software engineering . 21

2.6 Formal techniques for specification and verification 24

2.7 Development environment . 39

2.8 Introduction to the case studies 42

2.1 Introduction

Models are used to denote some abstract representation of software-based computing
systems and the way they are developed. Specifically, we need models to encode the
artifacts and software platforms, models to represent the process activities, to test, to
simulate and to validate the proposed solutions. Accordingly, comprehension, study and
analysis of computer systems and system engineering processes require models which make
it as easy as possible to express and to encode them. As a benefit, the study of problems
on high-level models enables us to deduce some properties on other less abstract models.

This chapter present elements of the formal and technical frameworks and some tools
we use in the context of our research objectives stated in Section 1.4. We review the
most related work and we give the place of model-driven engineering and domain-specific

15

CHAPTER 2. TECHNICAL FRAMEWORKS

language, formal methods, analysis techniques and tool support regardless of each of
the studied research topics. In addition, we present an introduction to the case study
that might prove useful in understanding our approach. Reader already familiar with
these concepts and definitions may safely proceed to subsequent chapters and consult the
definitions and notations herein only as needed.

2.2 Software systems engineering

Shortly after the beginning of software development, the way software is developed has
been analyzed and guidelines and best practices have evolved over time in the different
application domains. Since then, software systems engineering has evolved to an engi-
neering domain, having impacts on the different fields of system development, such as
development processes and software product life cycles. The IEEE defines in their stan-
dard ISI/IEC/IEEE 24765:2010 [2] Software Engineering as follows: software engineering
is the application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software.
In software systems engineering, two principal concepts intervene in the construction of a
system: a) the practical use and economic value, being the balance of what the customer
wants and what the customer is ready to pay for, and b) the correctness, suitability and
safety, being the attempt to ensure the correctness and the suitability of resulting product
and the absence of safety-critical failures. Tackling these two principal concepts are the
challenges of the software engineering discipline, which is based on, and evolves through,
application of scientific and mathematical knowledge.

2.3 Component based development

Component models provide a way to cope with some limitations of the object model.
Component models complement the object model by providing an architectural view of
the application. Therefore, component models provide a coarser-grained representation
of the application: a component is typically implemented as a compound of objects or
of other components, therefore providing different levels of abstraction for representing
complex systems. The main additions of component models to object models can be
summarized as follows:

• Identification of connection points between components and the associated links,

16

2.3. COMPONENT BASED DEVELOPMENT

• Identification of the services required by a client (instead of just the services provided
by a server)

• New communication patterns (for example event-based communication).

Component technology has become a central focus of software engineering in research
and development due to its great success in the market. Reuse is a key factor that
contributes to this success. The basic idea in Component Based Software Engineering
(CBSE) is building systems from existing components rather than “reinventing the wheel”
each time. The components are built to be reused in different systems and the component
development process is separated from the system development process [133].

Szyperski gives the following definition of a component [131]: A software component
is a unit of composition with contractually specified interfaces and explicit context de-
pendencies only. A software component can be deployed independently and is subject
to composition by third parties. There are several component-based methodologies in-
cluding Catalysis [28], KobrA [8], Fusion (Coleman 1993), OPEN process framework
[36]. Flex-eWare [60] is model-driven solution for designing and implementing embed-
ded distributed systems. It combines Model-Driven Engineering and Component-Based
Engineering. Bagnato et al. present a framework called EAST-AADL [10] which is an
architecture description language for the automotive domain supported with a methodol-
ogy compliant with the ISO 26262 standard. The language and the methodology set the
stage for a high-level of automation and integration of advanced analyses and optimization
capabilities to effectively improve development processes of modern cars.

Component-Based Development (CBD) processes are flexible to a lot of software devel-
opment processes (e.g., V cycle, Waterfall, Agile, etc.). In our context, the main concern
is to achieve architecture design with components and foster their reuse [24]. To explain
CBD processes, reference development phases corresponding to four abstraction levels of
a system model are identified in Figure 2.1: Requirements, System Architecture Design,
Software Architecture Design and Component Internal Design.

In addition, Figure 2.1 shows the different artifacts at each phase (features, analy-
sis functions, design functions and software components) and their m-to-n relationships
[10]. Typically, “m-to-n” relationships (from n entities of a higher level to m entities of
the lower level) allow refining models throughout the process for an incremental system
concretization.

Requirements. During this phase, requirements are analyzed in order to construct a
set of features that the system is expected to provide.

System Architecture Design. In this phase, each feature is analyzed and refined with

17

CHAPTER 2. TECHNICAL FRAMEWORKS

Requirements

System
Architecture

Software
Architecture

Component Internal
 Development

Requirements

Requirements

Requirements

Requirements

Feature Feature Feature

Function Function Function

SW
Component

SW
Component

SW
Component

SW
Component

SW
Component

Node Node

Function

Requirements

Design

Implementation

Figure 2.1: Component-Based Software Development Process and Used Artifacts [10]

a set of individual function units (e.g., sensing and actuating functions). Hence, the
functions are abstract and independent from any hardware or software.

Software Architecture Design. Each function is refined with a set of software compo-
nents (which define software components in terms of provided and required interfaces)
and hardware nodes.

Component Internal Design. In this phase, each software component is realized. The
realization may be done by: (1) combining existing software components or (2) from
scratch. Particularly, in CBD methods using UML such as Catalysis [28], each component
is designed and implemented internally as a set of classes that implement the interfaces
required externally. In addition, internal interactions are realized.

2.4 Model-based engineering (MBE)

Models are used to denote abstract representation of computing systems. In particular,
we need models to represent software architecture and software platforms to test, to
simulate and to validate the proposed solutions. Model-Based Engineering (MBE) based
solutions seem very promising to meet the needs of secure and dependable applications
development. The idea promoted by MBE is to use models at different levels of abstraction

18

2.4. MODEL-BASED ENGINEERING (MBE)

for developing systems. In other words, models provide input and output at all stages of
system development until the final system itself is generated.

2.4.1 Models

Models can be found in a variety of forms in a number of contexts in the area of software
engineering. Their primary purpose is to adjust the representation of a complicated
system by presenting essential information that may be of interest to the user. Models
accomplish this by abstracting those details that are irrelevant to the purpose for which we
want to use them. Because humans have limited observation and processing capabilities,
we use models to describe and interact with our environment, even if we aren’t aware of
it. Sentences spoken or written in a given language might represent a variety of mental
models. Mathematical equations are employed as models in physics, finance, and a variety
of other areas to do calculations and reasoning. While the use of models in software
engineering is not new, there has been a lot of attention in this topic in the previous
decade since modeling can help create trustworthy software systems [88].

A metamodel is a model that defines an abstract representation of models. As shown in
Figure 2.2, the Object Management Group (OMG) identified three degrees of abstraction
on top of a reality layer. The Meta Object Facility (MOF) [95], an OMG standard that
defines a collection of key concepts needed to construct models (and sufficient to define
itself, i.e., MOF is a metamodel of itself), is at the summit of this pyramid. As a result,
MOF (M3) can be used to develop modeling languages (M2), which can then be used to
define models (M1), which are representations of real-world systems (M0).

Figure 2.2: Modeling pyramid of the OMG

19

CHAPTER 2. TECHNICAL FRAMEWORKS

2.4.2 Model-Driven Engineering (MDE)

The concept of a model is becoming a major paradigm in software engineering. Its use
represents a significant advance in terms of level of abstraction, continuity, generality,
scalability, etc. Model-Driven Engineering (MDE) is a form of generative engineering
[121], in which all or a part of an application is generated from models. MDE is a
promising approach since it offers tools to deal with the development of complex systems
improving their quality and reducing their development life cycles. The development is
based on model approaches, metamodeling, Model-To-Model transformations, develop-
ment processes and execution platforms. The advantage of having an MDE process is
that it clearly defines each step to be taken, forcing the developers to follow a defined
methodology. MDE allows to increase software quality and to reduce the software sys-
tems development life cycle. Moreover, from a model it is possible to automatize steps by
model refinements and generate code for all or parts of the application.

MDE provides a useful contribution for the design of trusted systems, since it bridges
the gap between design issues and implementation concerns. It helps the designer to spec-
ify in a separate way non-functional requirements such as security and/or dependability
needs at a higher level of abstraction. This allows implementation independent validation
of models, generally considered as an important assurance step.

The development process cycles are mainly iterative, resulting in different levels of
model refinement from analysis to design. There are implementation platforms that ad-
dress these issues in a specific context (e.g., the MDA standard [17]), but in many other
contexts, the links between models refined or processed to solve references (to non-existent
elements, elements not referenced, created elements, etc.) are still solved in ad hoc man-
ner, without adequate support from generic technologies.

2.4.3 Domain Specific Modeling Language (DSML)

In software engineering, Domain Specific Modeling (DSM) [33, 38] is a methodology that
uses models to specify applications within a particular domain. Domain Specific Modeling
Languages (DSMLs) are languages that are specifically tailored to the needs of a partic-
ular problem or application domain. Domain experts can understand, validate, modify,
test, and sometimes even develop such languages. Domain Specific Modeling Languages
(DSMLs) are frequently used in MDE [123].

A language is defined by an abstract syntax, a concrete syntax and the description of
semantics [49, 33, 66]. The abstract syntax defines the concepts and their relationships
which are often expressed by a metamodel. On the one hand, the concrete syntax defines

20

2.5. INCORPORATING SECURITY IN SYSTEM AND SOFTWARE
ENGINEERING

the appearance of the language. A grammar or set of regular expressions is often used to
design the concrete syntax. On the other hand, semantics defines the sense and meaning
of the structure by defining sets of rules. Domain Specific Modeling (DSM) in software
engineering is used as a methodology using models as first-class citizens to specify applica-
tions within a particular domain. The purpose of DSM is to raise the level of abstraction
by only using the concepts of the domain and hiding low level implementation details [38].
A Domain Specific Language (DSL) typically defines concepts and rules of the domain us-
ing a metamodel for the abstract syntax, and a concrete syntax (textual, tree-structured,
tabular, diagrammatic, etc.). Domain Specific Language (DSL) allow specifying systems
in a domain-friendly manner. Most metamodels and/or abstract syntaxes offer one or
more concrete syntaxes to instantiate their concepts. The UML standard, for example,
provides concrete syntaxes with diagrams for different viewpoints, in a graphical manner
with icons and links. Other metamodels, and especially domain-specific modeling lan-
guages, often come with a textual syntax. As we shall see, processes in DSM reuse a lot
of practices from MDE, for instance, metamodeling and transformation techniques.

2.5 Incorporating security in system and software en-
gineering

In system engineering, security may be compromised on several system layers. Usually,
security is considered when design decisions are made leading to potentially conflicting
implementations. The integration of security features requires the availability of system
architects, application domain-specific knowledge and security expertise at the same time
to manage the potential consequences of design decisions on the security of a system and
on the rest of the architecture. For instance, at the architectural level, security means
having a mechanism (it may be a component or integrated into a component) to protect
the system and its assets. Once a system is engineered, it must be assessed to detect and
evaluate risks in order to treat them.

Approaches taking into account security aspects in software/systems engineering are
often considered as Software Systems Security Engineering. In this section, we will analyze
the state-of-the-art of different approaches in software systems security engineering. In
the first section, we will take a look at the integrated approaches taking into account
the engineering life cycle from requirements engineering down to software release. In a
second section, we will analyze more specific approaches in the Model-Driven Engineering
domain, which are in general less holistic and are specialized on different phases, such as

21

CHAPTER 2. TECHNICAL FRAMEWORKS

requirements engineering or system design.

2.5.1 Generic Software Systems Security Engineering

For the study of existing general-purpose security engineering approaches, we limit our-
selves to approaches covering a broad spectrum of the development life cycle and proposing
an extensive set of security-oriented activities. We will focus on the three forefront repre-
sentatives, namely Microsoft’s Security Development Life cycle (SDL), OWASP’s Compre-
hensive, Lightweight Application Security Process (CLASP) and McGraw’s Touchpoints,
as they are recognized as the major players in the field. These three secure software
development approaches or processes have been extensively validated, either by usage in
large-scale development projects [70], reviews by security specialized companies [80, 135]
or by being inspired by industrial projects [79]. An overview will also be given on further
standards or approaches.

Microsoft SDL. Microsoft’s Security Development Life cycle [82] is probably the most
rigorous, most tool supported and most oriented towards large organizations (e.g., Mi-
crosoft uses it internally). Microsoft defined this process in 2002 to address security issues
frequently faced in development. It contains an extensive set of (security-oriented) activ-
ities, which can be used as supporting activities in development process models. These
activities are often related to functionality-oriented activities and complement them by
adding security aspects. Proposed activities are grouped into classical development phases
(i.e., Education, Design, Implementation, Verification, Release) to ease the introduction
into existing approaches. Vast guidance, such as detailed description of methods and tool
support is available, enabling even less qualified practitioners to achieve the required out-
come. These guidances go as far down as to give coding and compiling guidelines, which
do not map to process model activities anymore.

CLASP. The Comprehensive, Lightweight Application Security Process (CLASP)
[105] by the Open Web Application Security Project (OWASP) Consortium is a lightweight
process containing 24 main security activities. It can be customized to fit different projects
(activities can be integrated) and focuses on security as the central role of the system.
The main focus of CLASP is to support engineering processes in which security takes
a central role. For this approach, the foundations of a secure system are built in the
architectural design and focus is given on this part of the process model. The activities
proposed are developed to cover a wide range of security aspects and are conceived from a
security-theoretical perspective and defined in an independent manner to allow a process
designer, wishing to integrate them, a large field of flexibility. Recommendations are given

22

2.5. INCORPORATING SECURITY IN SYSTEM AND SOFTWARE
ENGINEERING

on how to integrate these activities in an existing process, but there is no direct mapping
and the coordination is less direct than in other approaches (such as in SDL or Touch-
points). CLASP also offers a rich set of security support resources, such as an extensive
list of security vulnerabilities which can be used at different checkpoints throughout the
process. The drawbacks of the approach defined by the OWASP consortium are mainly
that some activity descriptions, although crucial for secure software development, fail to
give detailed methodological indications, and the lack of work product descriptions for
the proposed activities.

Touchpoints. McGraw’s work [78] is based on industrial experience and has been
validated over time. It provides a set of best practices regrouped into seven so-called
touchpoints. These touchpoints express the interactions among process developers and
security and how the developer can take into account the security aspects by using the
framework (e.g., Risk Management, Attack Analysis, Code Review, but also Examples
and Basic Security Knowledge). The activities focus on risk management and flexibility
and offer white-hat and black-hat approaches to increase security. For McGraw, risk
management is of elemental importance in software security. The approach tries to enable
this by providing a risk management framework supporting the security activities. In
[79] McGraw offers, in addition to an extensive set of security knowledge and links to
resources, a rich set of examples on security analysis activities and solutions. In giving
general guidelines and adaptive activities, the approach can be tailored to most existing
software processes focusing on the touchpoints of the existing process and the proposed
security enhancements.

2.5.2 Model-Based Software Systems Security Engineering

Model-based security engineering approaches tackle security aspects at different phases
of the development. From the organizational context over requirements engineering down
to system design and implementation different independent approaches exist. Several
approaches have been proposed in literature dealing with security engineering in the re-
quirements phase. Using abuse frames to model and develop the constraints of security
requirements on functional requirements and trust assumptions is proposed in [40, 41],
allowing the extension of problem frames to determine security requirements. This allows
defining security requirements as constraints on functional requirements and trust as-
sumptions. Another approach for security-oriented requirements engineering is proposed
by extending use cases to misuse cases [101, 126] to elaborate security threat identifica-
tion. The idea behind this approach is to describe functions the system should not allow,

23

CHAPTER 2. TECHNICAL FRAMEWORKS

eliciting security requirements and the following constraints on assets.
System design model-driven software engineering processes use UML profiles such as

SecureMDD [87], SecureUML [75] and UMLsec [62, 63] providing formal specifications for
verification of security-oriented systems. SecureUML provides a UML profile based on
Role-Based Access Control (RBAC) allowing specifying access control in the overall sys-
tem design. This information can be used to generate access control infrastructures,
helping the developers to improve productivity and the quality of the system-under-
construction. SecureMDD proposes a methodology which allows generating platform-
specific models (e.g., JavaCard) from a high-level stereotyped UML model. In addition
to guidelines in modeling security aspects, the framework offers verification based on a
formal approach on the produced models [37]. UMLsec is a UML profile aiming to sup-
port modeling of security-critical systems. The profile allows expressing security relevant
information within the existing model and diagrams and thus taking security aspect into
account in the overall system development. In addition to approaches focusing on one
phase of the development life cycle, one notable holistic MDE approach is given in lit-
erature. In [74, 73], the authors propose an integration model for integrating security
engineering approaches into software life cycle standards, mapping the concepts of the
software life cycle (Institute of Electrical and Electronics Engineers (IEEE) 12207) to se-
curity engineering concepts (a set of concepts collected from various security engineering
approaches [74]). The approach tries to give an understanding to stakeholders where and
when security activities intervene and interact with standard process life cycle activities.

2.6 Formal techniques for specification and verifica-
tion

Formal techniques [140] refers to mathematically rigorous techniques and tools for software
and hardware system specification, design, and verification. The term ‘mathematically
rigorous’ refers to specifications used in formal methods that are well-formed statements
in a mathematical language, and formal verification that are rigorous proofs of these
statements. A logic is the definition of such a language with a way to decide if a statement
is valid. A formula is a sentence in the language. A formula’s truth can be determined in
one of two ways: syntactically or semantically. A syntactic deduction is a finite sequence
of formulas that begins with an axiom (arbitrary true formula) and proceeds by adding
some inference rule to each formula in the sequence. The semantic approach aims to
provide an intuitive basis for formula definitions of fact. Depending on the application

24

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

field, many families of logics have been investigated. Constructive logics are used in
computer science with the aim of generating code from a software specification. Instead
of a value, each formula has a proof that shows is validity (true or false).

In the following sections, we presented an introduction to the logics and formal tech-
niques that will be used in this thesis.

2.6.1 Logics

2.6.1.1 Finite State machine (FSM)

Finite State machines (FSM) [138] are a type of system model in which the output is
determined by the complete history of the system’s inputs, rather than just the most
recent input. State machines have a performance that is defined by their history, as
opposed to strictly functional systems, where the output is only decided by the input. It
is an abstract machine that can be in exactly one of a finite number of states at any given
time. In response to some inputs, the FSM can transition from one state to another; this
is referred to as a transition. A set of states, the beginning state, and the inputs that
trigger each transition describe an FSM.

A finite state machine can be described by a state-transition table, which shows the
transitions between each conceivable state (depending on the machine’s inputs) and the
outputs that come from each input. Table 2.1 shows an example of a turnstile state-
transition table.

input
current state Locked Unlocked

push Locked Locked
coin Unlocked Unlocked

Table 2.1: State-transition table of turnstile

The turnstile state-transition table can be read as:

• If the current state is Locked and Push input occurred then, the state stays Locked,
i.e., a locked turnstile remains locked when pushed

• If the current state is Locked and Coin input occurred then, the state changes to
Unlocked, i.e., a locked turnstile unlocks when money is inserted

• If the current state is Unlocked and Push input occurred then, the state changes
Locked, i.e., an unlocked turnstile locks after its used

25

CHAPTER 2. TECHNICAL FRAMEWORKS

• If the current state is Unlocked and Coin input occurred then, the state stays to
Unlocked, i.e., unlocked turnstile remains unlocked if you insert more money

A finite state machine can alternatively be represented as a state diagram, which is a
directed graph. A node is used to represent each state (circle). Transitions from one state
to another are represented by edges (arrows). The input that causes each transition is
labeled on each arrow. A circular arrow returning to the original state represents an input
that does not create a state change. The start state is indicated by an arrow pointing
to the associated node, but it is otherwise disconnected. Figure 2.3 shows an example of
a turnstile finite state machine. This representation is equivalent to the turnstile state-
transition table depicted in Table 2.1.

Locked Unlocked

coin

push

push

coin

Figure 2.3: States of turnstile

2.6.1.2 First order logic (FOL)

First-order logic (FOL) [128], also called the quantificational logic, is the “usual” math-
ematical logic. FOL is a logical system for reasoning about properties of objects. The
usage of quantified variables and predicates, in addition to the links between logical com-
ponents, is the main characteristic of first-order logic. We can then formalize sentences
by saying that if x meets the condition P, it also satisfies the property Q for all x.

FOL augments the logical connectives from propositional logic. Propositional logic is
a formal system in mathematics and logic. The system is made of a set of propositions.
Each proposition has a truth value, being either true or false. Propositions can be joined
together using logical connectives to make new propositions :

• Negation: ¬p

• Conjunction: p ∧ q

• Disjunction: p ∨ q

• Implication: p⇒ q

26

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

• Biconditional: p⇔ q

• True: ⊤

• False: ⊥

For example :
p ∨ q ⇒ r

is a proposition indicating that p or q implies r.
In FOL, this system is extended with :

• predicates that describe properties of objects

• functions that map objects to one another

• quantifiers that allow to reason about multiple objects

Predicates. Predicates reason about objects in a declarative way. Predicate is applied
to a set of arguments and get a proposition that is either true or false.

For example :
is the husband of(women, man)

is a predicate indicating that man is the husband of women.
Equality FOL includes a particular predicate = that determines whether two objects

are equivalent. Equality can only be applied to objects; it cannot be used to compare two
propositions.

For example :
man1 = man2

is a predicate indicating that man1 and man2 are equivalent.

Functions. Functions return objects associated with other objects. Functions, like pred-
icates, can take unlimited number of parameters but always return a single value.

For example :
get wife(man)

is a function that return the wife of man.

Quantifiers. Each quantifier has two parts: (1) the variable that is introduced, and
(2) the statement that’s being quantified. The variable introduced is scoped just to the
statement being quantified.

27

CHAPTER 2. TECHNICAL FRAMEWORKS

Existential Quantifier A statement of the form ∃ x · p is true if , for some choice of
x, the statement p is true when that x is plugged into it.

For example :
∃ x · have a husband(x)

is a proposition that is true if some x exists such as the predicate have a husband(x) is
true, i.e., if some x have a husband.

Universal Quantifier A statement of the form ∀ x · p is true if, for every choice of x,
the statement p is true when x is plugged into it.

For example :
∀ x · have a wife(x)

is a proposition that is true if for all x the predicate have a wife(x) is true, i.e., if all x

have a wife.

2.6.1.3 Modal Logic (ML)

Modal logic (ML) [21] is another branch of logic that has its roots in philosophy. It
was created to look at the use of the terms “necessarily” and “maybe” in reasoning.
Modal formulas are composed of propositions, which are atomic arguments, and modal
operators, which deal with the concepts discussed above. In this section, we introduce
some fundamental concepts of modal logic.

Uni-modal logic. Given a set P of atomic propositions (i.e., propositions which cannot
be broken down into other simpler proposition) the propositional modal languageML is
defined as :

φ ::= p | ⊥ | φ ⇒ φ | □φ

where ⊥ is the constant false proposition and p ∈ P is an atomic proposition.
The classical boolean and ⇒ operators are defined as follows.

¬φ ≡ φ⇒ ⊥
φ1 ∨ φ2 ≡ (¬φ1)⇒ φ2

⊥ ≡ ¬⊤
φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2)

□ is called the necessity modal operator. Usually, but not necessarily, ⋄ is called the
possibility operator and is defined as ⋄ ≡ ¬□¬, the dual of □.

28

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

Multi-modal logic. A multimodal logic is a modal logic that has more than one prim-
itive modal operator. Given a set P of atomic propositions, the propositional multimodal
language MLn is defined as :

φ ::= p | ⊥ | φ ⇒ φ | □1 φ, ...,□n φ

Normal modal logic. A normal logic is a set L of modal formulas such that L contains :

• all axioms of propositional logic

• all instance of the Kripke schema (K) : □(A⇒ B)⇒ (□A⇒ □B)

and it is closed under the following inference rules

• Detachment rule (modus ponens): A⇒ B, A ⊢ B

• Necessitation rule: ⊢ A⇒ □A

Modal operator. A modal operator (also known as a modal connective) is a logical
connective used in modal logic. It is an operator that creates propositions out of propo-
sitions. A modal operator is distinguished “intuitively” by expressing a modal attitude
about the proposition to which the operator is applied. Knowledge [134], obligation [137],
and temporal [29] are some examples of use modal operators showing that modal logic is
used today as more general way for various types of concepts.

Examples of common modal operator

Epistemic logic. Epistemic logic is an example of modal logic applied for knowledge
representation. The multi-modal operators reflect the level of knowledge, ignorance and
belief in the possible world. The □x operator written as Kx() is translated as “x knows
that . . . ”.

For example, we express in epistemic logic “Bob know that Alice has a husband” as:

Kbob(have husband(alice))

Temporal logic. Temporal logic is an example of modal logic applied for propositions

qualified in terms of time. For example, the sentential tense logic has four modal operators
(in addition to all usual operators in first-order propositional logic):

• P: “It was the case that...” (P stands for “past”)

29

CHAPTER 2. TECHNICAL FRAMEWORKS

• F: “It will be the case that...” (F stands for “future”)

• G: “It always will be the case that...”

• H: “It always was the case that...”

For example, we express in temporal logic “Bob will eventually have a wife” as:

F(have wife(bob))

2.6.2 Formal Techniques

In order to fully cover all aspects of the approach, we focus on formal languages with
tool support that should meet the following requirements with respect to the proposed
approach (Chapter 3):

1. Enable the creation of a formal architectural metamodel;

2. Enable the creation of an architectural system architecture model, describing the
target application model according to the metamodel;

3. Support the specification and verification of concerns and solutions properties of the
system model based upon the architecture as reusable formal model libraries; and

4. Support the reuse of the resulting formal model libraries during the creation of a
target application model.

While any suitable formal language with tool support such as nuSMV, SPIN, UP-
PAAL, etc., can be used for modeling and verification, we choose to use Alloy [57] for
most of the analysis (Chapter 4, Chapter 5, Chapter 6) because of the simplicity and the
straightforward usage of its analyzer. The Alloy Analyzer supports visualizing models and
verifying their static properties and dynamic properties (e.g., behavioral aspects). It uses
a constraint solver providing automatic simulation and checking to find model instances
satisfying the constraints defined during the model specification process. This makes it an
appropriate candidate for our intended research work, i.e., modeling reusable models. In
our work, the Alloy Analyzer [1] essentially acts as a model checker and counterexample
generator. This enables us to construct models incrementally, allowing rapid iterations be-
tween modeling and analysis when writing a specification. A recent article [58] has further
highlighted the strengths of Alloy for software design. These strengths provide additional
motivation and justification for adopting Alloy in this work. An architect can instruct the

30

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

Alloy Analyzer to verify whether the property of the system design holds, which involves
exhaustively exploring every model instance within a specified scope (upper-bound). If it
does not hold, a counterexample will be generated which can be visualized. The absence
of counterexamples guarantees that the property holds in the modeled system, within the
specified scope. As claimed in [57], most counterexamples are found in a reasonably small
scope.

Note, however, even if Alloy provides all requirements needed and have a lot strengths,
we must be confident that the scope is appropriate to validate a property. For critical
applications we could argue that could be a problem. Therefore, practitioners would
prefer to use theorem proving for the formal verification (e.g., Coq [12], Event-B [5]).
In our case, we present in Chapter 6 an alternative solution using Coq [12]. Coq is a
formal proof management system. It includes a formal language for writing mathematical
definitions, executable algorithms, and theorems, as well as a development environment
for semi-interactively developing machine-checked proofs. In the context of our work, we
use Coq as proof assistant to specify the desired properties of the modeled system, the
formulation of theorems stating relations between properties; and to support proving these
relations semi-automatically using the proof assistant. However, using this environment
is more complex with less automation for tool support. It means it will affect our fourth
requirement: supporting the reuse. Ultimately, using a proof assistant will be more costly
for both the development of the reusable model (complexity) and offer more limited reuse,
but will give a proof not bound to any scope.

2.6.2.1 Alloy

Alloy is a lightweight formal modeling language based on the first-order relational logic
[57]. It was deeply inspired by Z [129] and influenced by different object-oriented modeling
languages such as UML. An Alloy model is composed of a set of signatures each defining
a set of atoms. Atoms may have fields which define relations between atoms. In addition,
signatures serve as types, and subtyping may be defined as signature extension. There
are several ways to specify constraints in the model. One is to treat them as Facts that
should hold at all times. Another is to treat them as Predicates defined in the form of
parameterized formulas that can be used elsewhere and as Assertions that are intended to
follow from the facts of a model. In some situations, functions in the form of parameterized
expressions may be used as helpers in the specification and verification processes.

The architect can instruct the Alloy Analyzer to verify whether the property prop of
the system design holds, with the command: check prop for n, which would exhaustively

31

CHAPTER 2. TECHNICAL FRAMEWORKS

explore every model instance within a scope of n, i.e., exhaustively explore every model
instance to the upper-bound n representing the number of atoms typed by each signature.
In the context of our work, the generated models have a maximum of n component
instances, n connector instances, etc. If the property does not hold, a counterexample will
be generated which can be visualized. The absence of counterexamples guarantees that
the property holds in the modeled system, within the specified scope. As claimed in [57],
most counterexamples are found in a reasonably small scope. We include a thorough
introduction to this language in the following of the section.

Modules. A metamodel can be created in Alloy using one or more Alloy modules, with
each module having its own (.als) code.

An Alloy module can begin with a module declaration, which allows elements declared
here to be reused by other modules. The keyword module is accompanied by a relative
path to the file in which the module is found in the module declaration. This path
specifies the reach of the module’s importability, i.e., it can be used to import any other
Alloy module found in the path’s core. The open keyword is then used, followed by
the relative path of the module to import, to perform an import. Listing 2.1, shows an
example of module declaration and importation.

1 module family
2 open util/ ordering [Person]

Listing 2.1: Module declaration & importation example in Alloy

All constructs declared in a module can be used after it is imported, including signa-
tures, fields, facts, predicates, functions, assertions, let expressions, and commands. All
of these terms will be described in the following sections.

Instances. The Alloy Analyzer is a tool that, given an Alloy module, produces a set
of Alloy instances, or models whose elements are typed by concepts and relations of the
metamodel identified by the Alloy module and that satisfies the module’s constraints. If
an instance is obtained by verifying an argument, it is referred to as a counter-example.
Counter-examples are situations where the verified statement is broken. The following
sections include comprehensive details on the declarable structures that make up an Alloy
module, as well as guidance on how they affect the Alloy Analyzer’s analysis.

Signatures & fields. An Alloy module is mainly made up of signatures and fields,
which describe the collection of elements that can be used to create any Alloy instance

32

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

that the Alloy analyzer can find: Instances are made up of atoms, which are non-dividable
entities whose form is determined by signatures, and atom tuples, which are defined by
fields. The keyword sig is used to declare a signature, which is preceded by the signature’s
name and a block containing a series of field declarations that relate this signature to
others. A signature can also be used to define subtypes by extending another signature.

Any signature declaration can be preceded by a series of modifiers:

• Multiplicity: Keywords like lone, one, and some compel the declared signature’s
number of atoms to be at most one, exactly one, or at least one, respectively. The
signatures can type any number of atoms if the multiplicity keyword is not used.

• Abstract: Keyword abstract ensures that no atom is typed directly by that signa-
ture. Note that if the signature which this modifier is applied is not extended, the
analyzer will ignore it.

A field’s declaration consists of an identifier label, accompanied by a series of arrow-
separated signatures. At each arrow’s end, the multiplicity can be defined.

An example of defining the concepts and relations of a family is provided in Listing
2.2.

1 abstract sig Person {
2 father : lone Man ,
3 mother : lone Woman
4 }
5 sig Man extends Person {
6 wife: lone Woman
7 }
8 sig Woman extends Person {
9 husband : lone Man

10 }

Listing 2.2: Example of signatures & fields declaration in Alloy

This module’s instances will be made up of atoms with either the Man or the Woman
signatures (as Person is abstract), as well as tuples with either the mother or the father
fields. Figure 2.4 shows an example of this type of situation. As this example shows,
structural knowledge alone is insufficient to accurately identify families. Constraints are
used to impose a collection of properties on instances, such as the fact that a woman cannot
be both her own mother and her father’s mother. We will show how such constraints can
be enforced and/or verified in the following sections.

33

CHAPTER 2. TECHNICAL FRAMEWORKS

Figure 2.4: An Alloy instance obtained from Listing 2.2

Facts. Facts are used to specify constraints. Constraints are properties that must always
hold in instances of the Alloy module in which they are declared. A fact declaration begins
with the keyword fact, followed by a block containing a boolean-valued Alloy expression
and, optionally, a name (only for documentation purposes). The fact depicted in Listing
2.3, for example, will prohibit instances of the Alloy module in Listing 2.2 from containing
people who are their own ancestors.

1 fact noPersonIsHisOwnAncestor {
2 no p: Person | p in p. @mother or p in p. @father
3 }

Listing 2.3: Fact declaration example in Alloy

It is possible to declare a signature fact when defining invariants specific to a given
signature. A signature reality is represented by a block that follows a chosen signature
and serves as its meaning. By context, we mean that the fact’s invariant applies to any
atom typed by the given signature. In Listing 2.4, we present a refined version of Listing
2.3, this time expressed as a Person signature fact. Note that the keyword this is used
to refer to the context (any given person) in a signature reality, while the operator @ is
used to refer to fields declared outside of the context in the signature Person.

1 abstract sig Person {
2 mother : lone Woman ,
3 father : lone Man
4 }{
5 not(this in p. @mother or this in p. @father)
6 }

Listing 2.4: Example of an alternative way to declare a fact on a given signature

34

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

Functions. Functions are set-valued (return a set of atoms or tuples of atoms) Alloy
expressions that can be parameterized. The keyword fun is used to declare function,
which is accompanied by an identifier, optional parameters, and a block containing Alloy
expressions.

In Listing 2.5, we show an example of parameterized function returning the set of
persons who are the parents of the person given in parameter.

1 fun getParents [p: Person]: set Person {
2 p. mother + p. father
3 }

Listing 2.5: Function declaration example in Alloy

Predicates. As functions, predicates are Alloy expressions that can be parameterized
but boolean-valued. The keyword pred is used to declare predicates, which is accompa-
nied by an identifier, optional parameters, and a block containing Alloy expressions. In
Listing 2.6, we show an example of predicate without parameters returning true if at least
one wife exists.

1 pred AtLeastOneWife {
2 some m:Man | m.wife != none
3 }

Listing 2.6: Predicate declaration example in Alloy

Assertions. In the sense that they are only used in commands, assertions are special
predicates which are declared with the keyword assert. Listing 2.7 shows an example of
an assertion.

1 assert WifeRequireAtLeastOneWomenandOneMan {
2 AtLeastOneWife implies #Man <= 1 and #Women <=1
3 }

Listing 2.7: Assertion declaration example in Alloy

Commands. To be able to produce instances for a given Alloy module, the Alloy An-
alyzer requires an order. It begins with a keyword that describes the type of analysis to
be performed:

• run: create a sample of instances where the predicate holds, provided a predicate

35

CHAPTER 2. TECHNICAL FRAMEWORKS

• check: given a statement (assertion), produce a sample of counter-examples that
contradict the assertion

.
Both types of commands should provide details about the domain space in which the

analysis will be conducted, with the Alloy analysis being decidable only because it is done
on a finite domain. This is accomplished by assigning a scope to each module signature,
which is an upper limit on the number of atoms typed by each signature.

The scope for all signatures is set to 3 by default. The keyword for can be used
to change the global reach. The but keyword can also be used to assign a scope to
each signature individually or to include both global and unique scopes. Listing 2.8
demonstrates how to use commands.

1 run {} for 4 Man , exactly 2 Woman // Seeking instance with 0 to 5 Man
and exactly 2 Women

2 run AtLeastOneWife for 5 // Seeking instance with 0 to 5 Person where
predicate AtLeastOneWife hold

3 check WifeRequireAtLeastOneWomenandOneMan for 10 // Seeking
counter-example with 0 to 10 Person

Listing 2.8: Commands declaration example in Alloy

2.6.2.2 Coq

Coq [12] works as a proof assistant. It is intended for the creation of mathematical proofs,
particularly formal specifications, programs, and proofs that programs conform to their
specifications. In Coq, the same language (Calculus of Inductive Constructions) is used to
formalizes properties, programs, and proofs. All logical judgments are typing judgments,
i.e., Coq is a type-checking algorithm.

Language. The Prop sort and the Type sort are the two categories in which Coq objects
are sorted :

• Prop : Prop is the sort for propositions, which means that well-formed propositions
are of this type.
Typical propositions are shown in Listing 2.9.

1 ∀ A B : Prop, A ∧ B → B ∨ B
2 ∀ x y : Z, x ∗ y = 0 → x = 0 ∨ y = 0

Listing 2.9: Coq example propositions

36

2.6. FORMAL TECHNIQUES FOR SPECIFICATION AND
VERIFICATION

New predicates can be defined either inductively, as in Listing 2.10, or by abstracting
over other existing propositions, as in Listing 2.11.

1 Inductive even : N → Prop :=
2 | even 0 : even 0
3 | even S n : odd n → even (n + 1)
4 with odd : N → Prop :=
5 | odd S n : even n → odd (n + 1).

Listing 2.10: Coq example inductive predicate

1 Definition divide (x y:N) := ∃ z, x ∗ z = y.
2 Definition prime x := ∀ y, divide y x → y = 1 ∨ y = x.

Listing 2.11: Coq example definition

• Type : Type is the sort for data types and mathematical structures, which means
that well-formed types and structures are of this type.
A basic type is shown in Listing 2.12.

1 Z → Z ∗ Z

Listing 2.12: Coq example basic type

Types can also be inductive structures, as in Listing 2.13, or functions over inductive
types are expressed using a case analysis, as in Listing 2.14.

1 Inductive nat : Set :=
2 | 0 : nat
3 | S : nat → nat.
4
5 Inductive list (A:Type) : Type :=
6 | nil : list A
7 | cons : A → list A → list A.

Listing 2.13: Coq example inductive type

1 Fixpoint plus (n m:nat) {struct n} : nat :=
2 match n with
3 | O → m
4 | S p → S (p + m)
5 end
6 where ”p + m” := (plus p m).

Listing 2.14: Coq example function over inductive type

37

CHAPTER 2. TECHNICAL FRAMEWORKS

Assumption. Assumptions extend the global environment with axioms, parameters,
hypotheses or variables. An example is given in Listing 2.15.

1 Parameter X Y : Set.
2 Parameter (R : X → Y → Prop) (S : Y → X → Prop).
3 Axiom R S inv : ∀ x y, R x y ↔ S y x.

Listing 2.15: Coq example simple assumptions

Proving. In Coq, proof development is done using a tactic-based language that allows
for a user-guided proof process. For example, the intros tactic is used to introduce
variables appearing with ∀ as well as the premises (left-hand side) of implications. If
the goal contains universally quantifiable variables (i.e., ∀), we can use the intros tactic
to incorporate those variables into the context. All hypotheses on the left side of an
implication can alternatively be introduced as assumptions using intros. If intros is used
alone, Coq will introduce all of the variables and hypotheses it can and will name them
automatically. By supplying the names in order, we can offer your own names. There is
a sister tactic intro that only introduces one thing.

For example, if we try to prove a modus tollens theorem:

(P ∧ Q)→ P

We can start by introducing the variables, as well as the hypotheses, using intro.
Then, we obtain the following hypothesis:

• P implies Q : P → Q

• not Q: ¬Q

Then, we can continue the proof by applying other tactics to these terms until the
proof is complete.

Listing 2.16 show the corresponding Coq for this example.
1 Theorem modus tollens : ∀ (P Q : Prop),
2 (P → Q) → ¬Q → ¬P.
3 Proof.
4 intros P Q P implies Q not Q.

Listing 2.16: Coq tatic intro

A short introduction to set of tactics relevant to the dissertation is available in Ap-
pendix B.1.

38

2.7. DEVELOPMENT ENVIRONMENT

2.7 Development environment

In this section, we will briefly introduce the technologies that we use in our development
environment to support the approach presented in this thesis through tool support.

2.7.1 Eclipse Modeling Framework

There are several Domain Specific Modeling (DSM) environments, one of them being
the open-source Eclipse Modeling Framework (EMF) [130]. Eclipse Modeling Framework
(EMF) provides an implementation of Essential MOF (EMOF), a subset of Meta-Object
Facility (MOF), called Ecore2. EMF offers a set of tools to specify metamodels in Ecore
and to generate other representations of them, for instance Java. In our context, we use
the Eclipse Modeling Framework. Note, however, that our vision is not limited to the
EMF platform. Here, we outline the different Eclipse tools used in the development of
the DSLs to support the modeling of the Security and Dependability (S&D) artifacts, the
repository and its Application Programming Interfaces (APIs). Among the tools used
here are cited:

• Eclipse is an open-source software project providing a highly integrated tool plat-
form. The applications in Eclipse are implemented in Java and target many oper-
ating systems including Windows, Mac OSX, and Linux [130].

• EMF is a modeling framework and code generation facility for building applications
based on a structured data model. In addition, EMF provides the foundation for
interoperability with other EMF-based tools and applications [130].

• RCP plug-in allows developers to use the Eclipse platform to create flexible and
extensible desktop applications upon a plug-in architecture [136, 77].

• Xtext [16] is a programming language and domain-specific language development
framework. With Xtext, you may use a powerful grammar language to define your
language. Xtext provides a set of APIs and DSLs to develop such DSLs easily. It
not only gives you a generated parser but supports the full stack of infrastructure
that is needed, which includes a parser, linker, type checker, compiler, and editing
support for Eclipse, any editor that supports the Language Server Protocol.

• Xtend [16] is a statically typed programming language that produces understandable
Java code. Xtend is based on the Java programming language in terms of syntax
and semantics. However it improves on several aspects:

39

CHAPTER 2. TECHNICAL FRAMEWORKS

– Extension methods : add new capabilities to closed types

– Lambda Expressions : short syntax for anonymous function literals

– ActiveAnnotations : annotation processing on steroids

– Make your libraries even more expressive with operator overloading

– Type-based switching with implicit casts with powerful switch expressions

– Polymorphic method invocation a.k.a. multiple dispatch

– Template expressions - intelligent white space handling

– No statements : everything is an expression

– Properties shorthand for accessing and defining getters and setters

– Type inference : rarely need to write down type signatures anymore

– Full support for Java generics : including all conformance and conversion rules

These aspects made Xtend well suited to the task of code generation. Particularly
the template engine that is optimized (e.g., automatic indentation support) to write
code generation rules to a target language and is fully integrated into the Eclipse
Integrated Development Environment (IDE) (e.g., auto completion for model data)
and Xtend.

Figure 2.5: Eclipse Modeling Framework

40

2.7. DEVELOPMENT ENVIRONMENT

2.7.2 Alloy Analyser

The Alloy Analyzer [59] is a solver that takes a model’s constraints and finds structures
that meet those constraints. It can be used to both to study the model by creating sample
structures and to test the model’s features by creating counterexamples. Structures are
graphically represented, and their appearance can be tailored to the domain in question.

Figure 2.6: Alloy Analyzer

2.7.3 Coq IDE

The Coq IDE [12] is a graphical application that can be used to replace coqtop in a more
user-friendly way. Its primary function is to allow the user to travel forward and backward
through a Coq file, performing or reversing commands as needed.

Figure 2.7: Coq IDE

41

CHAPTER 2. TECHNICAL FRAMEWORKS

2.8 Introduction to the case studies

This section contains a brief presentation of the case studies used in this dissertation.
First, we present a college library web application that will be used as an illustration
of the presented concepts throughout the dissertation. Then, we present a smart meter
gateway case study that we will employ to assess our proposed approach.

2.8.1 College library web application

As an illustrative example, we will consider a college library web application system [106],
such as that visualized in Figure 2.8. The web application provides online services for
searching for and requesting books. The users are students, college staff, and librarians.
Staff and students will be able to log in and search for books, and staff members can
request books. Librarians will be able to log in, add books, add users, and search for
books. Informally, among the set of requirements that the software system to build
should fulfill, we will focus on three functional requirements as examples. We specify
them as follows:

• Req 1. It should be possible for a user to visualize a book page.

• Req 2. It should be possible for the database to transmit data to the webserver.

• Req 3. It should be possible for the administrator to write a shared configuration
variable in the database.

Figure 2.8: A college library web application example

We use a UML class diagram to describe the high-level architecture model of the
web application, where software components are represented by classes, and relationships

42

2.8. INTRODUCTION TO THE CASE STUDIES

between these components are represented by associations. Figure 2.9 depicts the cor-
responding software architecture. For instance, there are implicit design decisions that
groups three entities (Webserver, Database, and Administrator) that collaborate in order
to ensure that the application has clearly defined the user types and the rights of the said
users. However, effective realizations of these connectors are not modeled in the UML
class diagram; they may be subject to certain changes and/or adaptations (e.g., new so-
lutions, deletions, modifications of realization), verification (e.g., formal verification) and
reuse (e.g., in the same domain or across domains) while the structure of the main soft-
ware architecture can be maintained. Each connector represents a communication pattern
which rigorous software developers, mainly architects, would like software modeling and
analysis languages to easily express.

Figure 2.9: A UML description of the high-level architecture of the college library web
application example

2.8.2 Smart meter gateway

As a case study, we use a smart meter gateway, which is a simplified version of a real
Gateway Protection Profile [18] that enables connecting to several meters for different
commodities, such as electricity, gas, water or heat, and communicating data with remote
entities in a Wide Area Network (WAN) or Home Area Network (HAN). The system is
visualized in Figure 2.10. The meter in the Local Metrological Network (LMN) is an
electricity meter that is located in the same housing as the Gateway. The electricity
meter communicates measurement information with the Gateway. The main function of
this system is to ensure that the measurement information is processed in the gateway and

43

CHAPTER 2. TECHNICAL FRAMEWORKS

exchanged with (1) the remote readout center (Rrc) in the WAN acting as an authorized
external entity, and (2) with a customer in the HAN acting as a Consumer.

Figure 2.10: Actors and roles in the smart meter gateway scenario [18]

Below, we describe a set of selected cases of the smart meter system, presented as a
set of functional requirements.

1. F Req 1. Exchange measurement data on consumed commodities: (1) Gateway
sends command to read data from the meter; (2) meter sends requested data to the
Gateway; and (3) Gateway processes and stores data.

2. F Req 2. Exchange measurement data and information on actual consumption: (1)
Rrc sends command to read measurements from the Gateway and (2) Gateway sends
measurement information to the Rrc.

3. F Req 3. Exchange information on actual electricity consumption and total amount
of energy consumed: (1) Customer sends command to read measurements from the
Gateway and (2) Gateway sends measurement information to the Customer.

44

Chapter 3

Approach

Contents
3.1 Introduction . 45

3.2 Conceptual vision . 46

3.3 Methodology for the creation of a design and analysis frame-
work . 47

3.4 Supporting the approach within SDLC 48

3.5 Conclusion . 49

3.1 Introduction

In this chapter, we introduce our general conceptual vision to study security at architec-
tural design level from the negative view (i.e., threats) and from the positive view (i.e.,
objective) in the context of component-based software architecture development. To im-
plement this vision, we proposed a methodology for the creation of a design and analysis
framework and provided some guidelines on how the resulted methodology may be used
to achieve security within exiting SDLC methodologies. The proposed methodology will
be then instantiated for our specific concerns: Section 4.3 for component-based & message
passing communication architecture; Section 5.3 for security threats; and Section 6.3 for
security objectives. With regard to our contributions, we deal with C1 related to the
Research Objective 1 (RO1) and C6 related to the Research Objective 2 (RO2).

The remainder of the chapter is organized as follows. Section 3.2 presents the concep-
tual vision of the approach. Then, Section 3.3 describes the methodology to build a design

45

CHAPTER 3. APPROACH

and analysis framework. Section 3.4 presents how our approach could be integrated to
existing system development life cycle. Finally, Section 3.5 concludes.

3.2 Conceptual vision

The goal of this research work is to develop a methodological tool support for the design
and analysis of security concerns as a quality attribute that is becoming increasingly
critical in current software-intensive systems. Notions such as properties, models, reuse
and analysis can help in the development of well designed, properly modeled, accurately
documented, and well-understood secure systems. For instance, security concerns are
captured in the form of desired properties of the system model, analysis activities verify
them to identify appropriate solutions (e.g., policies, mechanisms, ...) to improve the
system design and treat any identified property violations.

Conceptual model

for security in message passing
distributed system

Security DSL
for

component-port-connector
architecture

Semantic domain

support

Tooled semantic domain
formalize

formalize

Theoretical level

Development level

(C
om

po
ne

nt
-b

as
ed

 a
rc

hi
te

ct
ur

e,

m
es

sa
ge

 p
as

si
ng

, s
ec

ur
ity

 o
bj

ec
tiv

es
,

th
re

at
s,

 p
ol

ic
ie

s
)

Figure 3.1: Conceptual vision

Figure 3.2 is an application of the conceptual vision introduced in Figure 1.1 to high-
light the work achieved in this dissertation.

• Theoretical level: Creation of a conceptual model of a component-based software
architecture, message passing communication system, security concerns and the se-
mantics. This conceptual model provides a common understanding of all concepts
to implement in the development level, while the semantic domain ensures a precise
description of the addressed security problems from a negative perspective (threats)
and/or a positive perspective (objectives) and solution approaches (policies). Ar-
chitecture and security concerns are described as properties of the modeled system.
For our purpose, we used textual description, UML class diagram to capture the
structural concepts and first-order logic and modal logic for the semantics.

46

3.3. METHODOLOGY FOR THE CREATION OF A DESIGN AND
ANALYSIS FRAMEWORK

• Development level: Creation of a tooled methodology for the system architect to
support the design and analysis activities during the processes of building secure
software architecture from the conceptual modeling and the semantic domain. For
our purpose, we used EMFT and its features to build the DSLs and Alloy and Coq
for the analysis.

3.3 Methodology for the creation of a design and
analysis framework

In this section, we proposed an implementation of the conceptual vision introduced in
Figure 1.1 which are then applied for the architecture and security concerns in the next
chapters. Then, we describe a set of guidelines for the integration of the methodology in
existing SDLC methodologies.

In general, the proposed methodology supports the design and analysis of software
architecture and concerns. The goal is to capture and formalize various concerns of
the system architecture and provide them as verified reusable models. It enables the
identification of requirement issues (i.e., concerns violation) of a system architecture by
means of verification of desired properties on the architecture model. It also enables the
suggestion of solutions to improve the system design and to treat the identified issues. As
depicted in Figure 3.2, the methodology is composed of several steps and activities.

 Define the system architecture
and concerns

semantics

Formalize the concerns

Detect issues /
incorporate solution

by reuse

Construct the architectural
metamodel

Formalize the
metamodel

Model
software architecture

Application
development processTheoretical Level

application
requirements

Concerns models libraries for
reuse

Software architecture model

C
oncerns

references

A
pplication
concerns

requirem
ents

S
oftw

are architecture
references Build the DSL & Model

Libraries

Development Level

Figure 3.2: Methodology for the creation of a design and analysis framework

47

CHAPTER 3. APPROACH

Conceptual modeling and semantics. We begin by developing an architecture meta-
model as high-level concepts of the software architecture. We need to capture the struc-
tural and behavioral aspects of the system architecture. In addition, we develop a prop-
erty view of the meta-model to describe the concerns. The property view describes the
concepts required for building reusable property model libraries. The entry point of the
approach is an architectural meta-model, manually created with high-level concepts of
the software architecture. Then, we define the semantics of the system architecture and
concerns according to the system computing model.

Development. We create a DSL from the conceptual model to describe software ar-
chitecture and the identified concerns in the form of properties on the modeled system.
A set of property model libraries for reuse is also provided, capturing the classification
of properties. The semantics of the architecture and the concerns are then specified us-
ing a suitable formal tooled language. A set of reusable formal model libraries for the
identification of the desired and/ or for the violation of properties are also provided. Fur-
thermore, we propose solutions in the form of reusable formal model libraries to mitigate
these issues.

3.4 Supporting the approach within SDLC

As shown in the right part of Figure 3.2, the overall approach can easily fit well into
various systems development life cycles (SDLCs) as a supplement to the requirements
specification and architecture design phases. We build a concrete architecture by instan-
tiating the architecture meta-model and its formal description into a concrete model for
an application-specific system. Then, we use the concerns libraries to identify potential
issues in the formal system model by checking that it satisfies the desired properties. If
the model does not satisfy the properties, we use our developed libraries to suggest new
solutions to treat the identified issues.

For simplicity, as shown in Figure 3.3, we illustrate how the approach can be integrated
within the Royce iterative waterfall SDLC [118]. The activities defined in Section 3.3
come as a supplement to the existing phase as follows: (1) The requirements specification
is extended with the “Formalize the (New) libraries for reuse” activities. This activity
concerns the modeling framework development process and should only be done if a new
concern requirement is needed to be added in the framework, i.e., if a needed specific
concern requirement is not already defined in the framework libraries. (2) The architecture
design is extended with the “Model Software Architecture” and “Incorporate / Analysis

48

3.5. CONCLUSION

Formalize the (New)
Libraries for reuse

Model Software
Architecture

Analysis / Incorporate
by Reuse

Requirements
Spécification

Analysis

Architecture
Design

Software
Design

Implementation

Verification and
Validation

Operation and
Maintenance

Figure 3.3: The proposed approach within the Royce iterative waterfall SDLC

by Reuse” activities. The goal of these activities is to ensure that the software architecture
model satisfies the desired properties for the designed system using the previously define
libraries. (3) Finally, if we determine that the system design does not satisfy the desired
properties, we take action to revisit the requirements of the system. In this way, we can
iterate over the requirements specification and architecture design phases of the SDLC to
revise and improve the architecture design of the system and mitigate the issues. As a
result, the proposed approach enables the generation of formal artifacts early enough in
the lifecycle to apply useful analysis within the design loop.

3.5 Conclusion

In this chapter, we discuss the implementation of the conceptual vision and these related
notions in the context of software architecture and its concerns.

The proposed methodology allows the creation of a design and analysis framework to

49

CHAPTER 3. APPROACH

assist software architect in the design process. The methodology support the development
of reusable formal model libraries for the specification and analysis of concerns by a
concern expert; and the architecture design conforming to requirements related to these
concerns by an architect by reuse. Therefore, the approach allows to capture expert
knowledge on specific concerns in the form of the reusable model libraries. These libraries
are then used to aid the designer to design concrete system architectures through detection
of issues and the selection of solutions.

In the next chapters, we apply this methodology to create :

1. Component and connector based software architecture design and analysis frame-
work in Chapter 4.

2. Security threats design and analysis framework in Chapter 5

3. Security objectives design and analysis framework in Chapter 6.

50

Chapter 4

Software architecture

Contents
4.1 Introduction . 51

4.2 Related work . 52

4.3 Methodology for the creation of a design and analysis frame-
work . 54

4.4 Supporting the approach within the SDLC 55

4.5 Software architecture meta-model 56

4.6 Scenario view . 60

4.7 Formal specification and analysis in Alloy 66

4.8 Tool Support . 76

4.9 Conclusion . 79

4.1 Introduction

As presented in Section 1.1, we aim to be able to verify a set of security concerns to check
if the architecture models of distributed system satisfy all the desired properties. As a
prerequisite, we propose a reliable and verified architectural and interaction model that
will be then used as building blocks to specify the security concerns in the negative view,
i.e., threats modeling, in Chapter 5 and in the positive view, i.e., objectives modeling,
in Chapter 6. We explore the well-known communication paradigms in the context of
component-connector-based software architecture development. Therefore, in this chapter
we present an approach to specify the architecture model and reusable communication

51

CHAPTER 4. SOFTWARE ARCHITECTURE

models in the forms of libraries of connectors. With regard to our contributions, we deal
with C1 ,C2.1 ,C2.1 , C3.1 ,C4.1 ,C5.1 related to the Research Objective 1 (RO1), the
software architecture concerns from C6 ,C7 related to the Research Objective 2 (RO2)
and the architecture concerns from C8 ,C9 related to the Research Objective 3 (RO3).

We will focus in the following sections on message passing system (MPS) communica-
tion paradigm. The methodology developed in this work to build rigorous secure software
architecture uses MPS as the communication model. However, the approach can be ap-
plied to other communication paradigms. In Appendix A, we provide some illustrations
to demonstrate the deployment of the approach on other communication models such as
remote procedure call (RPC) and distributed shared memory (DSM).

The remainder of this chapter is organized as follows. Section 4.2 compares our work
with related work. Then, Section 4.3 describes the methodology to build a design and
analysis framework for component-based software architecture development. Section 4.4
presents how our approach could be integrated to existing system development life cy-
cle. Section 4.5 presents our component based architectural meta-model. Section 4.6
describes the communication style semantics through logical specification using first or-
der and modal logic, and finite state machine models. Then, Section 4.7 presents and
interpretation of the software architecture meta-model and the proposed logical speci-
fications in Alloy. Section 4.8, proposes a tool we developed to support the proposed
approach. Finally, Section 4.9 concludes and outlines directions for future work.

4.2 Related work

Recently, there has been a shift in terms of software architecture design [111] towards
combining multiple software engineering paradigms, namely, Component-Based Develop-
ment [25], Model-Driven Engineering [123] and formal methods [112]. In the spirit of
using multi-paradigms, many description languages and formalisms for modeling complex
distributed systems have been proposed in the literature. A significant proportion of these
works have aimed at capturing the communication, concurrency, and some non-functional
properties of the components that comprise a given system.

A general methodology for the specification of component-based architecture connec-
tion was presented in [6]. It uses architectural connectors with formal semantics. The
approach allows to verify architectural compatibility as the type checking in program-
ming languages. We can also cite two other approaches for describing connectors. Bures
and Plasil modeled four basic component interconnection types message passing, remote
procedure calls, streaming, and blackboard to allow for connector variants to reflect dis-

52

4.2. RELATED WORK

tribution, security, fault-tolerance, etc. in software architectures [19], while Shin et al.
proposed a software product line approach modeling the variability of secure software
connectors and to promote connector reusability [125],

In addition to the above approaches, several formal languages used in engineering
software systems are studied in this respect. Examples of these studies include those
using process algebras (e.g., CCS [83], CSP [53], ACP [14], and π-calculus [84])), algebraic
specification languages (e.g., CKA [54] and C2KA [61]), architectural modeling languages
(e.g., CCM [91], AADL [120], MARTE [94], PSCS [96], SysML [92], and the recent OMG
initiative UCM [97]), and architectural formal languages (e.g., OCL [93], Wright [6],
labeled transition systems [108]).

Further, communication styles used in software architectures often align with the in-
teractions distinguished in different kinds of middleware such as message-oriented middle-
ware (e.g. CORBA Message Service [91], JMS [103], JORAM [22]), remote procedure call-
oriented middleware (e.g. CORBA [91], Java Remote Method Invocation (RMI) [104]),
and distributed shared memory (e.g., JavaSpaces [102]).

While each of the above-mentioned modeling formalisms, modeling languages, and spe-
cific execution infrastructures have already been successful in many application domains,
in this manuscript we build a new communication-based architectural formal modeling
language using Alloy for the structural and behavioral specification and analysis of dis-
tributed systems. Close to our proposed approach, especially on the relationship between
structural and behavior aspects, MARTE [94] Generic Component Model (GCM) and
Precise Semantics of Composite Structures (PSCS) [96] allowed to specify semantics on
component-based architecture models. Our approach mainly differs in that connectors
are defined as concepts close to a component dedicated to communication that provide
verified behavior properties such as communication style specific properties. In both
other approaches, connectors are simple links and all behavior aspects are specified at
the Port/Component level. We believe that by allowing the specification and verification
connector libraries, our approach, when compared to others, enables good reusability and
makes connectors an ideal place to integrate other verified communication mechanisms
(e.g., security, safety, dependability, etc.).

Also closely related to our vision is the approach of Khosrav et al. [65] which provides a
modeling and analysis of the Reo connectors using Alloy and the approach of Garlan [26]
that describes a formal modeling and analysis of software architectures built in terms
of the concepts of components, connectors, and events. In addition, recently, Nawaz and
Sun presented an approach for formally modeling, analyzing, and verifying Reo connectors
using PVS [90].

53

CHAPTER 4. SOFTWARE ARCHITECTURE

In our work, we provide support for specifying systems at various levels of abstraction
by combining the characteristics of both state-based and trace-based models, offering a
flexible and verifiable view of communication where several non-functional requirements
could be specified and treated in a fine-grained fashion. In contrast to our work, other
modeling and formal languages for capturing the communication and non-functional re-
quirements of complex distributed systems do not directly provide such a simple and
understandable view.

4.3 Methodology for the creation of a design and
analysis framework

In this section, we present an application of the methodology proposed in the previous
chapter (Section 3.3) to the development of component and connector based software
architecture. Particularly, we consider the use of message passing as a communication
paradigm in the context of distributed systems.

As depicted in Figure 4.1, the methodology is composed of several phases and activ-
ities. It supports the development of verified and reusable model libraries to represent
communication solutions for specifying software architectures of distributed systems.

 Define the communication
style semantics

Formalize the connectors

Verify
 connectors properties

Incorporate
connectors

Verify functional
requirements

 Construct the
 component-port-connector
 metamodel

Formalize the
metamodel

Model
software architecture

Application
development process

application
requirements

Connector
libraries for reuse

Software architecture model

Theoretical Level Development Level

C
om

ponent based
architecture references

C
om

m
unication styles

references

Build the DSL & Model
Libraries

Figure 4.1: Overview of the proposed approach

54

4.4. SUPPORTING THE APPROACH WITHIN THE SDLC

Conceptual modeling. We begin by developing a component-port-connector meta-
model as high-level concepts of the software architecture. The details of the meta-model
are described in Section 4.5. We provide a structural model by describing the structural
concepts of the meta-model to ensure that software architectures are well formed. We
also model a set of common communication style semantics by rigorously specifying them
using finite state machine representations as described in Section 4.6.2. This enables us to
define the semantics of the different communication styles so that they can be formalized
to verify desirable properties of the communication connectors that will be used to build
software architectures for distributed systems.

Development. After constructing the component-port-connector meta-model and in-
teraction semantics, we developed : (1) a DSL to model software architecture and (2) a
formal modeling as an interpretation of the meta-model, the communication primitives
and their properties using Alloy as a tooled formal language. By doing so, we obtain a
formal architecture meta-model and a formal specification of the connectors (one for each
modeled communication style). Therefore, we are able to formally verify properties for
each connector (i.e., interaction) that represent particular connector requirements. The
result is a formal architecture meta-model module and set of formal verified connector
modules that can be easily reused.

4.4 Supporting the approach within the SDLC

As shown in the right part of Figure 4.1, the overall approach can easily fit well into
various systems development life cycles (SDLCs) as a supplement to the requirements
specification and architecture design phases. We build a concrete architecture by in-
stantiating the abstract architecture meta-model and abstract verified connectors into a
concrete model for an application-specific distributed software system. Then, we use the
verified communication primitives offered by the connectors to verify functional require-
ments of this concrete software architecture. In Section 4.8, we demonstrate how to build
a software architecture for the college library web application described in Section 2.8.1
using the proposed approach and the reusable connector libraries, thereby enabling the
verification of functional requirements satisfied by the developed software architecture.

For simplicity, as shown Figure 4.2, we illustrate the application of the framework
within the Royce iterative waterfall SDLC [118]. The activities defined in Section 4.3
come as a supplement to the existing phase as follows. (1) The requirements specification
is extended with the “Formalize the (New) Connector Librariries” activities. These activ-

55

CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.2: The proposed architecture design approach within the Royce iterative waterfall
SDLC

ities concern the modeling framework development process and should only be done if a
new interaction type is needed to be added in the framework, i.e., if a needed communi-
cation requirement is not already defined in the framework libraries. (2) The architecture
design is extended with the “Model Software Architecture” and “Incorporate Connector”
activities. The goal of these activities is to ensure that the software architecture model
satisfies the desired properties for the designed system. (3) Finally, if we determine that
the system design does not satisfy the desired properties, we take action to revisit the
requirements of the system. In this way, we can iterate over the requirements specification
and architecture design phases of the SDLC to revise and improve the architecture design
of the system.

4.5 Software architecture meta-model

In the context of reliable distributed systems, a connection between distributed compo-
nents should perform a reliable and trusted communication. While this could be done with
standard specification of distributed component-based applications, such as those based
on CCM [91, 93] and ADL-like vocabulary [120, 6], it would be impossible to configure
and control the reliability and trustworthiness of communication connections at design
time. This motivates the usage of the connector concept to embed specific interaction

56

4.5. SOFTWARE ARCHITECTURE META-MODEL

semantics and multiple implementations of the semantics within distributed computing
systems. The basic idea of this extension is that the semantics of an interaction is defined
by a certain port type and that one or more connectors can support this port type. The
port types are already fixed at component design time, whereas the choice of a connector
(and a specific interaction) is also constrained by the deployment characteristics.

A connector has certain similarities with a component. The main difference is that it
is dedicated for communication purposes. Since a connector is responsible for incoming,
outgoing, intercepting, and blocking data and messages, it is an ideal place for the integra-
tion of security and dependability mechanisms. In our meta-model, we provide concepts to
capture representative communication styles commonly used in distributed systems within
component-port-connector architecture model.

Figure 4.3: Component-port-connector meta-model

We propose to build a modeling framework to define architectural models that are
conceptually close to the industrial practice, i.e., containing a UML-like and a UCM-like
vocabulary. Figure 4.3 visualizes a meta-model as a class diagram. The meta-model
provides concepts for describing software architectures in terms of different views [68],
with a focus on:

1. Logical view to capture the functional architecture of the system in terms of com-

57

CHAPTER 4. SOFTWARE ARCHITECTURE

ponents. This view is concerned with the functionality that the system provides for
the end user.

2. Scenario view which builds upon the logical view, describing the behavioral aspects
of the system. This view is concerned with the representation of communication
behavior between distributed components.

In what follows, we detail the principal classes of our meta-model, as described with
UML notations in Figure 4.3.

• Component. A Component is a modeling artifact which represents a piece of software
architecture. It has a set of Ports which realize InteractionNature defining how it
can interact with other Components.

• Port. A Port is the interaction point through which a Component can communicate
with its environment.

• Connector. A Connector specifies a link that enables communication between Ports
by allowing the exchange of communication artifacts (cf. Scenario view, Communi-
cationStyle)

• InteractionNature. An InteractionNature defines the nature of an interaction be-
tween two Components. This is an abstract concept. In our work, we have focused
on defining the following two InteractionNatures:

– Data. A Data defines a data interaction between two Components. Any Com-
ponent that realizes a Data can be either providing content (data) as a producer
or requiring content (data) as a consumer. In the case of a producer, Data is
of type OUT. In the case of a consumer, Data is of type IN.

– Interface. An Interface defines a set of public features (Methods). It specifies
a kind of contract. Any Component that realizes (implements) this Interface
must fulfill this contract. In this case, the Interface is PROVIDED by the
component. For any Component that needs that interface (i.e., requires another
component to fulfill this contract), the Interface is REQUIRED.

• Interaction. An Interaction represents a specific communication behavior between
Components (sender and receiver(s)). This is an abstract concept. In our work, we
have focused on defining the following two Interactions:

58

4.5. SOFTWARE ARCHITECTURE META-MODEL

– MsgPassing. A MsgPassing is the representation of a message exchange from a
sender Component that is producing it (i.e., a Component realizes an OUT
Data with its corresponding DataType) and a receiver Component that is
consuming it (i.e., a Component realizes an IN Data with its corresponding
DataType). The this interaction type is used for message passing interaction.

– Invocation. An Invocation is the representation of a call and the reply of a
Method from a sender Component that requires it (i.e., a Component realizes
a REQUIRED Interface that necessitates it) to a receiver Component providing
it (i.e., a Component realizes a PROVIDED Interface that implements it). The
this interaction type is used for remote procedure call and dynamic shared
memory interaction.

Example of our meta-model instantiation. In the example of the college library
web application described in Section 2.8.1, we can identify the corresponding architectural
concepts that will need to be instantiated in order to fulfill the desired requirements:

• Req 1. We define two components, namely a Browser and a Website. The Browser
needs to use a port that realizes a required interface containing a method getBook.
The Website needs to use a Port that realizes a provided interface containing a
method getBook. Finally, it needs to use a connector to connect these ports in order
to make possible the delivery of getBook invocations between the Browser and the
Website.

• Req 2. We define two components, namely a Database and Website. The Database
needs to use a port that realizes a data producer. In a similar way, the Website
can use a port that realizes a data consumer. Finally, it needs to use a connector
to connect these ports in order to make it possible to pass the messages from the
Database to the Website.

• Req 3. We define two components, namely Terminal and Database. The Terminal
can use a port that realizes a required interface containing a method Write, allowing
it to execute write operations. Similarly, the Database can use a port that realizes
a provided interface with a method Write, allowing it to receive write operations.
Finally, a connector must connect the two ports of the Terminal and the Database,
allowing it to deliver write invocations between the Terminal and the Database.

59

CHAPTER 4. SOFTWARE ARCHITECTURE

At this level of description, we are able to define: (1) a set of structural elements, mainly
components, ports and connectors, (2) required and provided services and (3) dependencies
in terms of methods and connections.

4.6 Scenario view

In this section, we present the behavioral semantics specifications of the proposed meta-
model for message passing communication. In our component-based software architecture
metamodeling framework (see Scenario part of Figure 4.3), the communication between
two components is done through a channel as a connector connecting two ports belonging
to these two components. To understand and apprehend this semantics we used finite
state to describe them. Then, used first-order logic and modal logic as a formalism that is
abstract and technology-independent to specify the desired properties for message passing
communication. This provides a more generic and understandable approach with map-
ping support to different existing property specification languages used in modeling and
software development.

4.6.1 Logical specification

A distributed software system is modeled by a set of components and a set of connectors.
Components communicate and synchronize by sending and receiving messages through
existing connectors. A computation program encodes the local actions that components
may perform. The actions of the program include modifying local variables, sending
messages, and receiving messages to/from each component in the corresponding system
architecture. In the context of engineering secure systems, we define the following domain
to capture the notion of both legitimate and illegitimate message providers (e.g., inject)
and message consumers (e.g., intercept) of the system messages.

Sets

• C is the set of components

• D is the set of message payloads

• M is the set of messages

• T is the set of data types

60

4.6. SCENARIO VIEW

• I is the set of invocations

• R is the set of arguments

• V is the set of variables

• A is the set of actions

– send(m, t) denotes that the message m ∈M of type t ∈ T is sent into the system

– receive(m, t) denotes that the message m ∈ M of type t ∈ T is received from the
system

– call(i, args in, args out) denotes that the invocation call i ∈ I is sent into the system
with the arg ins ∈ R and the expected arg outs ∈ R

– executeCall(m, args in, args out) denotes that the invocation call i ∈ I is received
from the system with the arg ins ∈ R and the expected arg outs ∈ R

– reply(m, args in, args out) denotes that the invocation reply i ∈ I is sent into the
system with the arg ins ∈ R and the the concretes arg outs ∈ R

– executeReply(m, args in, args out) denotes that the invocation reply i ∈ I is re-
ceived from the system with the arg ins ∈ R and the the concretes arg outs ∈ R

– reply(var, value) denotes that the write instruction for the v ∈ V is sent into the
system with the value ∈ D

– executeWrite(var, value) denotes that the write instruction for the var ∈ V is re-
ceived from the system with the value ∈ D

– read(var) denotes that the read instruction for the v ∈ V is sent into the system

– executeRead(var, value) denotes that the read instruction for the var ∈ V is received
into the system

Modalities

• Hc(a) is a predicate indicating that action a ∈ A Happens for component c ∈ C

• pred1 < pred2 : is predicate that indicating that all possible sequences of actions that
contain a valid predicate pred2 also contain a valid predicate pred1 that happens before
pred2

• pred1 ⇝ pred2: is predicate that indicating that all possible sequences of actions that
contain a valid predicate pred1 also contain a valid predicate pred2 that happens after
pred1

61

CHAPTER 4. SOFTWARE ARCHITECTURE

4.6.2 Communication behavior semantics

As presented in Figure 4.1, we provide the behavioral semantics of message passing com-
munication style in distributed computing systems as abstract communication models.
Therefore, in modeling this communication style, each of the two communicating parties
(client and server) and the channel (connector connecting two ports) between them are
described as a finite state machine.

Message passing. In the message passing communication style (MPS), a channel is
used for sending a message from a client to a server. The message is simply transmitted
without any acknowledgement. The communication channel is modeled as a set of fixed
length for messages offering two operations: (a) push to add an element in the set and
(b) pull to remove an element from the set.

The left side of Figure 4.4 shows the states of a client for sending a message. It
is shown that if the state is 0 (sent) and a send event occurs when the buffer is not
full (∼ (#buf = max)), it changes its state from 0 to 1 for sending 1. On the other hand,
if the buffer is full (#buf = max), it remains at state 0. It also shows that if the state is
sending and the message is in the buffer (mess in buf), it changes its states from 1 to 0
for sent.

Similarly, the right side of Figure 4.4 shows the states of a server for receiving a mes-
sage. It is shown that if the state is 0 (received) and the buffer has a message (mess in buf),
it changes its state from 0 to 1 for receiving a message. On the other hand, if the message
is not in the buffer, it remains at state 0. It also shows that if the state is receiving and
the message is no longer in the buffer, it changes its states from 1 to 0 for received.

0 1

send,∼ (#buf = max)

send, #buf = max

mess in buf

0 1

receive, mess in buf

receive,∼ mess in buf

∼ mess in buf

Figure 4.4: States of a client (resp. server) for sending (resp. receiving) messages

Figure 4.5 shows the states of a connector for pulling and pushing a message. It is
shown that if the state is 0 for waiting to receive messages from a caller and a message is

1∼ Q denotes the negation of the statement Q and #A denotes the cardinality of the set A.

62

4.6. SCENARIO VIEW

pushed into the buffer, it changes its state from 0 to 1. If the current state 1 for waiting
to receive a message from a caller or retrieving a message from a receiver, it shows that if
an event push or pull is executed and the buffer has more than one message but is not full
(max > #buf > 1), then it stays in the state 1. Otherwise, if a pull occurs and the buffer
only has one message (#buf = 1), it changes its state from 1 to 0. But if a push occurs
and the buffer is full minus 1 message (#buf = max − 1), it changes its state from 1 to 2
for retrieving messages from a receiver. Finally, it shows that to change from state 2 to 1
only a pull event is required.

0 1 2

push

push, max > #buf > 1

pull, max > #buf > 1

push, #buf = max − 1

pull, #buf = 1 pull

Figure 4.5: States of a MPS connector

Message passing with FIFO ordering. The message passing with first-in-first-out
(FIFO) ordering communication style is identical to message passing with a preservation of
the order from the perspective of a sender. If a sender sends one message before another,
it will be delivered in this order at the receiver. Here, the communication channel is
modeled as a queue of fixed length for messages offering two operations: (a) push to add
an element at the head of the queue and (b) pop to remove the element at the tail of the
queue.

The left side of Figure 4.6 shows the states of a client for sending a message. It is
shown that if the state is sent and a send event occurs when the buffer is not full, it
changes its state from 0 (sent) to 1 for sending. On the other hand, if the buffer is full,
it remains at state 0. It also shows that if the state is sending and the message is at the
head of the buffer (mess head buf), it changes its states from 1 to 0 for sent.

Similarly, the right side of Figure 4.6 shows the states of a server for receiving a
message. It is shown that if the state is received and a message is at the tail of the buffer
(mess tail buf) it changes its state from 0 (received) to 1 for receiving a message. On the
other hand, if the message is not at the tail of the buffer, it remains at state 0. It also

63

CHAPTER 4. SOFTWARE ARCHITECTURE

shows that if the state is receiving and the message is no longer in the buffer, it changes
its states from 1 to 0 for received.

0 1

send,∼ (#buf = max)

send, #buf = max

mess head buf

0 1

receive, mess tail buf

receive,∼ mess tail buf

∼ mess in buf

Figure 4.6: States of a client (resp. server) for sending (resp. receiving) messages

Figure 4.7 shows the states of a connector for popping and pushing messages. It is
shown that if the state is 0 for waiting to receive a message from a caller and a message is
pushed into the buffer, it changes its state from 0 to 1. If its current state is 1 for waiting
to receive a message from a caller or retrieving a message from a receiver, it shows that
if an event pop or pull happens and the buffer has more than one message but is not
full, then it stays in the state 1. Otherwise, if a pop occurs and the buffer only has one
message, it changes its state from 1 to 0. But if a push occurs and the buffer is full
minus 1 message, it changes its state from 1 to 2 for retrieving messages from a receiver.
Finally, it shows that to change from state 2 to 1 only a pop event is required.

0 1 2

push

push, max > #buf > 1

pop, max > #buf > 1

push, #buf = max − 1

pop, #buf = 1 pop

Figure 4.7: States of a MPS FIFO connector

4.6.3 Communication properties specification

Our intent is to illustrate the approach described in Section 4.3 using representative
communication style categories extracted from commonly used communication paradigms

64

4.6. SCENARIO VIEW

in distributed systems in the context of a component-port-connector architecture model.
Therefore, in following sections, we specify some representative properties for the message
passing category.

Once the client c1 sends a message to server c2 eventually that server receives it.

∀ c1, c2 ∈ C, d ∈ D, typ ∈ T · Hc1(send(d, typ)) ⇝ Hc2(receive(d, typ)) (4.1)

Once the server c1 receives a message, it must already have been sent by a certain
client c2.

∀ c1, c2 ∈ C, d ∈ D, typ ∈ T · Hc2(send(d, typ)) < Hc1(receive(d, typ)) (4.2)

Messages sent from the client c1 to the server c2 reach the server c2 in the same order
as they were sent from c1.

Hc1(send(d1, typ1)) < Hc1(send(d2, typ2)) ∧
Hc2(receive(d1, typ1)) < Hc1(receive(d2, typ2))

(4.3)

Example of communication properties specification. In the example of the college li-
brary web application described in Section 2.8.1, we can identify the corresponding com-
munication semantics that will need to be used in order to fulfill the desired requirements:

• Req 1. As this requirement concerns RPC communication, we don’t cover it here,
but it is available in Appendix A.1.2.2.

• Req 2. Both of the message passing communication and the message passing with
FIFO ordering styles allow us to express Req 2. As identified in Section 4.5, two
components (Website and Database) and a connector are involved in this require-
ment. To fulfill the requirement, the Website must respect the semantics of an MPS
client and the Database must respect the semantics of an MPS server as described in
Figure 4.4. Finally, the connector must respect the semantics of an MPS connector
as described in Figure 4.5.

• Req 3. As this requirement concerns DSM communication, we don’t cover it here,
but it is available in Appendix A.1.2.2.

65

CHAPTER 4. SOFTWARE ARCHITECTURE

At this level of specification, we are able to: (1) specify the behavioral semantics of a set
of communication styles, and (2) provide an intermediate high-level representation (using
finite state machines and, first-order logic and modal logic) which is more understandable
by system architects and that can be interpreted in appropriate formal tooled languages.

4.7 Formal specification and analysis in Alloy

In this section, our software architecture meta-model incorporating the concepts of a
component-port-connector architecture is formalized using a suitable tooled formal lan-
guage.

We discuss the formalization of our software architecture meta-model followed by the
specification of the connectors and the communication primitives using a suitable tooled
formal language : Alloy. The semantics of these connectors and communication primitives
are the same as those presented in Section 4.6.2. Moreover, we present the definition of a
set of properties of these constructs presented in Section 4.6.3.

4.7.1 Formalizing the software architecture meta-model

A software architecture meta-model as described in Section 4.5 is mapped to our Alloy
meta-model as follows. The mapping of structural elements is straightforward. Architec-
tural components, ports, connectors, interfaces, methods, and data are mapped to their
namesake types in Alloy.

To model the behavior of the system, we consider abstract time in the form of a
parameter to express instants of occurrences of actions. An execution of a system is a
sequence of steps (instants), where a step is determined by two successive time points.
We used the Ordering module provided within Alloy to express a time in a discrete sense,
referred to as Tick, where time is explicitly modeled as a set of discrete, ordered Tick
instances. Therefore, associations (such as the set of ports connected by one connector)
can be made by adding a relationship with the Tick set (i.e., the connects relationship
that relates connector to port is a relationship from connector over port to Tick).

A component is connected to a connector through a number of ports. The three basic
concepts in the model are components, ports, and connectors that are represented as a
set of Alloy signatures as depicted in Listing 4.1. With regard to the scenario view, we
defined two additional concepts: MsgPassing and Invocation. Each of them is produced
by the client and consumed by the server.

66

4.7. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

We encode the set of actions described in Section 4.6.1 considering the notion of
execution steps in the context of an asynchronous message-passing system as follows:

• T is the sequence of execution steps

• Each modality mod(param1 , . . . , paramn) is transformed to a predicate mod(param1 ,

. . . , paramn, t) denoting its relation to the execution step t ∈ T . For example,
Ec(inject(m)) is transformed to E inject(c, m, t) indicating that a component c ∈ C
is able to inject a message m ∈M into the system at the step t ∈ T

1 sig Port {
2 realizes : InteractionNature
3 kind: PortKind
4 }
5 sig Component {
6 uses: set Port
7 }
8 abstract sig Connector {
9 connects : set Port -> Tick

10 }{
11 all disj c1 ,c2:Component ,t:Tick {
12 c1.uses + c2.uses in connects .t implies
13 some n1 ,n2:Node {
14 c1 in n1.hosts.t
15 c2 in n2.hosts.t
16 n1 = n2 or some l:Link | n1+n2 in l. connects .t
17 }
18 }
19 }
20 abstract sig Channel extends Connector {
21 disj portI ,portO: one Port
22 }{
23 all t:Tick | connects .t = portI + portO
24 }
25 abstract sig CommunicationArtifact {
26 client : one Component ,
27 server : one Component
28 }{
29 client != server
30 }
31 sig MsgPassing extends CommunicationArtifact {
32 msgData : one Message
33 msgType : one DataType

67

CHAPTER 4. SOFTWARE ARCHITECTURE

34 }
35 sig Invocation extends CommunicationArtifact {
36 invocation_of : one Method ,
37 arguments_call : set Argument ,
38 arguments_reply : set Argument -> Tick
39 }
40 abstract sig InteractionNature {}
41 sig Data extends InteractionNature { datatypes : set DataType and kind:

one DataDirection }
42 sig DataType {}
43 sig Interface extends InteractionNature { methods : set Method and kind:

one InterfaceKind }
44 sig Method { parameters : set Parameter }
45 sig Parameter { direction : ParameterDirection }
46 enum PortKind { INPUT , OUTPUT }
47 enum DataDirection { DATA_IN , DATA_OUT }
48 enum InterfaceKind { PROVIDED , REQUIRED }
49 enum ParameterDirection { IN , OUT , INOUT , RETURN }

Listing 4.1: Software architecture meta-model in Alloy

Additionally of the properties presented in Section 4.6.3 we add some addition verifi-
cation of the good integration of the connector within the architecture. Among the set of
possible and specified characteristics of the structural architecture, a subset of them are
encoded in terms of properties as predicates and the results of their verification are stated
below. The first of these properties asserts that components cannot interact without the
presence of a connector between them. This constrains the way in which component con-
nections can be established in a system architecture and further prescribes the structural
elements that are required to enable communication.

(a) “For two components c1 and c2 to interact, a connector con must be present between
them”

1 pred components_can_interact [ca: CommunicationArtifact , c1 ,c2:
Component] {

2 some con:Connector , t:Tick , p1:c1.uses , p2:c2.uses |
3 c1 = ca. client and c2 = ca. server => p1 + p2 in con. connects .t
4 }

The next two properties assert the consistency of component type operations for each
Interaction by constraining the structural properties of the components involved in such
interactions. We again encode these constraints as predicates in Alloy.

68

4.7. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

(b) “For two components c1 and c2 to interact using message passing, each must uses a
port that realizes the correct Data offering the same Datatype dt.”

1 pred msgpassing_type_check [c1 ,c2:Component , dt: DataType] {
2 all m: MsgPassing |
3 m. msgType = dt and c1 = m. client and c2 = m. server =>
4 some p1:c1.uses , p2:c2.uses {
5 p1. realizes . datatypes = dt
6 p2. realizes . datatypes = dt
7 p1. realizes .kind = DATA_OUT
8 p2. realizes .kind = DATA_IN
9 }

10 }

The Alloy Analyzer shows that properties (a) and (b) hold.

4.7.2 Formalizing and verifying connectors and their properties

The MPS connector is defined as a buffer of messages associated with two operations
push and pull to support the high-level communication primitives. Listing 4.2 depicts an
excerpt of the formalization of the MPS connector. For instance, once a send is executed
by the sender component, MsgPassing is buffered in a connector (line 10). When it is
received by the receiving component, it is removed from the connector (line 14). Then,
to specify the behavior of the MPS connector, we define a fact traces (lines 17 to 20) to
constrain the acceptable state transitions of the message passing connector to form a valid
executable trace. This enables the formalization of the behavioral semantics described in
Section 4.6.2.

1 sig ConnectorMPS extends Channel {
2 buffer : set MsgPassing -> Tick ,
3 capacity : Int
4 }
5 pred MPS_init [t: Tick] {
6 all c: ConnectorMPS | # c. buffer .t = 0
7 }
8 pred MPS_push [t, t’: Tick , c: ConnectorMPS , mp: MsgPassing] {
9 #c. buffer .t < c. capacity

10 c. buffer .t’ = c. buffer .t + mp
11 }
12 pred MPS_pull [t, t’: Tick , c: ConnectorMPS , mp: MsgPassing] {
13 mp in c. buffer .t
14 c. buffer .t’ = c. buffer .t - mp

69

CHAPTER 4. SOFTWARE ARCHITECTURE

15 }
16 fact traces {
17 MPS_init [TO/first]
18 all t:Tick - TO/last | let t’ = TO/next[t] |
19 some c: ConnectorMPS , mp: MsgPassing | MPS_push [t, t’, c, mp]
20 iff not MPS_pull [t, t’, c, mp]
21 }

Listing 4.2: Message passing connector

The MPS connector with FIFO ordering, like the previously discussed MPS connector,
is also defined as a buffer of messages. Listing 4.3 depicts an excerpt of the formalization
of the MPS connector with FIFO ordering. In this case, the buffer is modeled as queue to
establish the FIFO behavior of the connector (line 5). Similar to the MPS connector, the
high-level communication primitives are supported by push and pop operations. However,
to ensure the FIFO ordering, the Alloy specification employs the enqueue and dequeue
operations when defining the push and pop operations. This enables the formalization of
the behavioral semantics described in Section 4.6.2 which constrains the valid executable
traces resulting from MPS connector with FIFO ordering to those that ensure that mes-
sages are removed from the buffer in the order in which they are received. This is defined
as a fact called traces (lines 18 to 21).

1 sig QMessage extends QElem {
2 message : one MsgPassing
3 }
4 sig ConnectorMPSFIFO extends Channel {
5 buffer : one Queue ,
6 }
7 pred MPSFIFO_init [t: Tick] {
8 all c: ConnectorMPSFIFO | QEmpty [t, c. buffer]
9 }

10 pred MPSFIFO_push [t, t’: Tick , c: ConnectorMPSFIFO , mp: MsgPassing] {
11 one qm: QMessage | qm. message = mp and QEnq[t, t’, c.buffer , qm]
12 }
13 pred MPSFIFO_pop [t, t’: Tick , c: ConnectorMPSFIFO , mp: MsgPassing] {
14 QLast[t, c. buffer]. message = mp
15 QDeq[t, t’, c. buffer]
16 }
17 fact traces {
18 MPSFIFO_init [TO/first]
19 all t:Tick - TO/last | let t’ = t.next |
20 some mp:MsgPassing , c: ConnectorMPSFIFO | MPSFIFO_push [t, t’, c, mp]

70

4.7. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

21 iff not MPSFIFO_pop [t, t’, c, mp]
22 }

Listing 4.3: Message passing with FIFO ordering connector

Communication in the message passing communication style is performed using the send()
and receive() primitives (see Listing 4.4). The send() primitive (line 7) requires the name
of the receiver component, the transmitted data, and the expected data types as param-
eters, while the receive() primitive (line 18) requires the name of the anticipated sender
component and should provide storage variables for the message data and the expected
data types.

In spite of blocking primitives that are often chosen, for the sake of easier realization,
here we consider the semantics of non-blocking primitives to capture the more general
asynchronous communication paradigm. The non-blocking send(receiver , data) returns
control to the sender immediately and the message transmission process is then executed
concurrently with the sender process. The sender executes a send(receiver , data) which
results in the communication system constructing a message and sending it to the receiver
through the corresponding connector. The receiver executes a receive(sender , data) which
causes the receiver to be blocked, awaiting a message from the sender. When the mes-
sage is received, the communication system removes the message from the corresponding
connector, extracts the data from the message and delivers it to the receiver. As a prereq-
uisite, we added the check type interaction data predicate (lines 2 to 5) to ensure that the
message’s types are supported at both the sending and receiving components. Without
data type checking, the support of the message type is only verified at execution time.

1 pred check_type_interaction_data [mp: MsgPassing]{
2 one di:Data , p:mp. client .uses | di in p. realizes and di.kind =

DATA_OUT and
3 mp. msgType in di. DataType
4 one di:Data , p:mp. server .uses | di in p. realizes and di.kind = DATA_IN

and
5 mp. msgType in di. DataType
6 }
7 pred Component . H_send [receiver :Component , d: Message , typ:DataType , t:

Tick] {
8 some mp: MsgPassing {
9 mp. client = this

10 mp. server = receiver
11 mp. msgData = d
12 mp. msgData . msgType = typ
13 check_type_interaction_data [mp]

71

CHAPTER 4. SOFTWARE ARCHITECTURE

14 one t’:t.next | let c = { c: ConnectorMPS | c.portO in mp. client .uses
and

15 c.portI in mp. server .uses } | MPS_push [t,t’,c,mp]
16 }
17 }
18 pred Component . H_receive [sender :Component , d: Message , typ:DataType , t:

Tick] {
19 some mp: MsgPassing {
20 mp. client = sender
21 mp. server = this
22 mp. msgData = d
23 mp. msgData . msgType = typ
24 check_type_interaction_data [mp]
25 one t’:t.next | let c = { c: ConnectorMPS | c.portO in mp. client .uses

and
26 c.portI in mp. server .uses } | MPS_pull [t,t’,c,mp]
27 }
28 }

Listing 4.4: Message passing communication

Among the set of possible and specified characteristics of the behaviors of the message
passing communication styles presented Section 4.6.3, a subset of them are encoded in
terms of properties as predicates and assertions and the results of their verification are
stated below.

(a) “Once the client c1 sends a message to server s1, eventually that server receives it.”
(Equation (4.1))

1 pred send_is_eventually_received [c1 ,c2:Component ,d:Message ,typ:
DataType] {

2 one t:Tick | one t’:t.nexts |
3 c2. H_send [c1 ,d,typ ,t’] => c1. H_receive [c2 ,d,typ ,t]
4 }

(b) “Once the server s1 receives a message, it must already have been sent by a certain
client c1.” (Equation (4.2))

1 assert receive_must_be_sent {
2 one t:Tick | one t’:t.nexts | some c1 ,c2: Component | some d:

Message | some typ: DataType |
3 c2. H_receive [c1 ,d,typ ,t’] => c1. H_send [c2 ,d,typ ,t]
4 }

72

4.7. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

(c) “Messages sent from the client c1 to the server s1 reach the server s1 in the same
order as they were sent from c1.” (Equation (4.3))

1 assert is_FIFO {
2 all disj c1 ,c2: Component | all disj d1 ,d2: Message | some typ1 ,

typ2:
3 DataType | all ts1:Tick | let ts2 = ts1.nexts | all tr1:Tick |

all tr2:Tick |
4 (c1. H_send [c2 ,d1 ,typ1 ,ts1] and c1. H_send [c2 ,d2 ,typ2 ,ts2]
5 and c2. H_receive [c1 ,d1 ,typ1 ,tr1]
6 and c2. H_receive [c1 ,d2 ,typ2 ,tr2])
7 => tr2 in tr1.nexts
8 }

The Alloy Analyzer shows that properties (a) and (b) hold for both types of message
passing connector (simple and FIFO). It also shows that property (c) does not hold for
a simple message passing connector. Since the property does not hold, Alloy produces
a counterexample, which shows the main reason why the specified property does not
hold. However, the Alloy Analyzer shows that this property holds for a message passing
connector with FIFO ordering.

Example of building a concrete architecture.

• Model the software architecture. The software architecture model is defined as an
instance of the proposed meta-model with respect to the functional requirements as
identified in Section 4.5. Listing 4.5 depicts the Alloy specification of the architecture
of the college library web application example described in Figure 2.8. For instance,
the Browser can be seen as an instantiation of the Component type. We proceed
by defining the component types (lines 1 to 4), ports (lines 6 to 11), and interfaces
(lines 13 to 18) as simple extensions to the concepts of our software architecture
meta-model.

1 one sig Browser extends Component {}{ uses = PortInterfaceBrowser }
2 one sig Website extends Component {}{ uses = PortInterfaceWebsite +

PortDataWebsite }
3 one sig Database extends CentralMemoryManager {}{ uses =

PortDataDatabase + PortSMDatabase }
4 one sig Terminal extends Component {}{ uses = PortSMTerminal }
5
6 one sig PortInterfaceBrowser extends Port {}{ realizes =

InterfaceBrowser }
7 one sig PortInterfaceWebsite extends Port {}{ realizes =

InterfaceWebsite }

73

CHAPTER 4. SOFTWARE ARCHITECTURE

8 one sig PortDataWebsite extends Port {}{ realizes = DataWebsite }
9 one sig PortDataDatabase extends Port {}{ realizes = DataDatabase }

10 one sig PortSMDatabase extends Port {}{ realizes =
InterfaceSMDataDatabase }

11 one sig PortSMTerminal extends Port {}{ realizes =
InterfaceSMAdminstrator }

12
13 one sig InterfaceBrowser extends Interface {}{ kind = REQUIRED and

getBook in methods }
14 one sig InterfaceWebsite extends Interface {}{ kind = PROVIDED and

getBook in methods }
15 one sig getBook extends Method {}{ idBook in parameters }
16 one sig idBook extends Parameter {}{ direction = IN }
17 one sig InterfaceSMAdminstrator extends Interface {}{ kind =

REQUIRED and Write in methods }
18 one sig InterfaceSMDataDatabase extends Interface {}{ kind =

PROVIDED and Write + Read in methods }
19
20 one sig DataWebsite extends Data {}{ kind = DATA_IN }
21 one sig DataDatabase extends Data {}{ kind = DATA_OUT }
22 one sig DatabaseContent extends DataType {}

Listing 4.5: Building a concrete software architecture of the college library web application
example in Alloy

• Incorporate connectors. At this step, connectors are integrated by reusing the de-
veloped and verified connector libraries. In the same way as the meta-model, con-
nectors are instantiated in the concrete architecture by simply defining connector
types as extensions of one of the defined connectors. Listing 4.6 depicts the Alloy
specification of connectors for the college library web application example described
in Section 2.8. The corresponding connector communication style is chosen as iden-
tified in Section 4.6.3.

1 one sig BrowerWebsiteConnector extends ConnectorRPC {}{
2 portO = PortInterfaceBrowser
3 portI = PortInterfaceWebsite
4 }
5 one sig DatabaseWebsiteConnector extends ConnectorMPS {}{
6 portO = PortDataDatabase
7 portI = PortDataWebsite
8 }
9

74

4.7. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

10 one sig TerminalDatabaseConnectorSM extends ConnectorSM {}{
11 portO = PortSMTerminal
12 portI = PortSMDatabase
13 }

Listing 4.6: Instantiate Connectors of a web application example in Alloy

• Verify functional requirements

– Req 1. As this requirement concerns RPC communication, we don’t cover it
here, but it is available in Appendix A.2.3.

– Req 2. We use some of the previously specified and verified structural and
communication behavior properties for message passing to specify and verify
the application specific functional requirement Req 2 on the concrete architec-
ture. Listing 4.7 depicts the Alloy specification of this functional requirement
as a predicate combining the verified properties msgpassing type check (line 3)
and send is eventually received (line 4). These properties are applied to the
specific concepts and behaviors identified for this requirement as discussed in
Section 4.5 and 4.6.3. The Alloy Analyzer shows that Req 2 holds.

1 pred Req_1 {
2 some w:Website , d:Database , m:Message , typ: DataType {
3 msgpassing_type_check [d,w,typ]
4 send_is_eventually_received [d,w,m,typ]
5 }
6 }

Listing 4.7: Using previously verified MPS properties to specify functional requirement
of a web application example in Alloy

– Req 3. As this requirement concerns DSM communication, we don’t cover it
here, but it is available in Appendix A.2.3.

75

CHAPTER 4. SOFTWARE ARCHITECTURE

At this level of specification, we are able to: (1) formally represent an interpretation of
the software architecture model and properties in Alloy to support property specification
and analysis, (2) formalize the behavioral semantics of the connectors described in Sec-
tion 4.6.2, specifically by encoding the valid executable traces, (3) verify properties of the
connectors to establish a set of reusable connector libraries that can be instantiated with
respect the specific requirements in a concrete application, and (4) verify the satisfaction of
a set of functional requirements for a concrete application through reuse of the previously
specified and verified connectors.

4.8 Tool Support

We have implemented a prototype to support the approach as an Eclipse plug-in. Our
starting point is the software architecture metamodel presented in Section 4.5 as the meta-
model for a software architecture DSL. The metamodel describes the abstract syntax of
the DSL, by capturing the concepts of the component-port-connector software architec-
ture domain and how the concepts are related.

A1.1. Edit (Ecore DSL metamodel)

A2.1. Edit DSL model (xtext)

Conforms to

Alloy formal metamodel

Formal model (Alloy)

A1.2. Translate
(component-port-connector
metamodel)

Conforms to

A2.4. Analyse and
generate (Alloy
solution model /
Counter-example)

A2.5. Generate
(Requirements report)

A2.3. Generate (Alloy model,
functional requirements)

A1.3. Define
reusable formal
model libraries
(connectors)

A2.2. Integrate
communication
library

 A2.6. Find issues

M
odeling fram

ew
ork

block
A

pplication
developm

ent block

Partial Automation

Automation

Future Automation

Figure 4.8: Tool support architecture and artifacts of the approach

The architecture of the tool, as shown in Fig. 4.8, is composed of two main blocks:

76

4.8. TOOL SUPPORT

(1) Modeling framework block and (2) Application development block. Each block is
composed of a set of modules to support the corresponding activities (the numbers in
parentheses correspond to the activity numbers in Fig. 4.8).

4.8.1 Modeling framework block

The first step (A1.1) for the implementation of the tool is the definition of the DSL meta-
model using EMF and Xtext. Furthermore, the metamodel can be enriched with logical
constraints to avoid some undesired structures, in a similar way to the constraints defined
in Section 4.7.1. The second step (A1.2) is the formal definition (in Alloy) of the static
semantics using the Alloy tool, based upon the DSL metamodel according to the proce-
dure discussed in Section 4.7.1. We will name this definition the formal metamodel. Then
in (A1.3) reusable connector libraries, their corresponding communication primitives and
a set of properties are also defined as Alloy models according to the procedure discussed
in Section 4.7.2.

4.8.2 Application development block

The third step (A2.1) is the development of a textual editor to allow the user to model
a software architecture (DSL model) conforming to the DSL metamodel. The last step
(A2.3) is the development of transformations to support the generation of a formal model
(in Alloy) from a DSL model, using Xtend (see Figure 4.9). The generation process allows
to automatically incorporate the appropriate communication styles in the produced Alloy
software architecture model as described in Listing 4.5.

Back to the illustrative example, the plug-in allows a user to edit a DSL model (see Fig-
ure 4.10) conforming to the DSL software architecture metamodel as input for generating
an Alloy model conforming to the formal metamodel and incorporating the communica-
tions. Furthermore, the tool allows the user to define some structural constraints during
the specification of the DSL model. The resulting Alloy model can be enhanced with
properties in the form of predicates. The Alloy Analyzer is then invoked to verify the
desired requirements as properties on the solution model.

77

CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.9: Transformations supporting the generation of an Alloy from a DSL model
using Xtend

Figure 4.10: Definition of the DSL model and functional requirements for the college
library web application

78

4.9. CONCLUSION

Putting all this together and using the developed tooled framework, we are able to: (1)
model a concrete component-based software architecture and functional requirements using
a domain-specific language, (2) generate an interpretation of the resulted software archi-
tecture model and properties in Alloy, (3) verify the satisfaction of a set of functional
requirements through reusable specified and verified communication models (connector),
and (4) generate new artifacts related to the software architecture model and properties.

4.9 Conclusion

In this chapter, we described a formal framework to support the rigorous design of soft-
ware architectures focusing on the communication aspects at the architecture level. The
framework is based on a component-port-connector meta-model describing the high-level
concepts of distributed software architecture supporting a set of communication styles,
namely message passing, remote procedure call, and distributed shared memory. Then,
using Alloy, we formally specified and verified a software architecture based on a set
of reusable models, namely connectors corresponding to each considered communication
styles. In addition, we develop an MDE tool chain to support the proposed approach
to assist the architects of model-based rigorous development of computer-based systems,
combining modeling and formal techniques.

Our experience in the specification and analysis of various communication styles, in-
cluding message passing, RPC, and DSM using Alloy are presented. Here, we have verified
some most common properties of these three styles of communication and found that the
properties hold. Thus from our experience we can say that the connectors and the software
architecture using them are verifiable for building reliable distributed systems.

In the next chapters, we study security at the architecture design level, focusing on
the message passing paradigm, as an underlying communication system. As we shall see,
since a connector is responsible for incoming and outgoing messages, it is an ideal place
for the integration of solutions that transparently treat security issues at the architecture
level.

79

CHAPTER 4. SOFTWARE ARCHITECTURE

80

Chapter 5

Security threats

Contents
5.1 Introduction . 81

5.2 Related work . 82

5.3 Methodology for the creation of a design and analysis frame-
work . 84

5.4 Supporting security-by-design within the SDLC 86

5.5 Property view . 87

5.6 Formal specification and analysis in Alloy 95

5.7 Tool support . 105

5.8 Conclusion . 109

5.1 Introduction

The current practice to formulate security statements from the negative perspective is
given through expressing attacker capabilities to e.g., gain access to a protected data
from a message observation. Microsoft for example uses a threat taxonomy from the
attacker’s perspective called STRIDE. Therefore, to define the security architecture of
the system, we need an analysis of the possible threats; security solutions can then be
introduced to stop or mitigate them.

In this chapter, we propose to use formal methods for the precise specification and
analysis of security architecture threats as properties of a modeled system. Starting
from an informal description of a threat (i.e., from standards and classifications such as

81

CHAPTER 5. SECURITY THREATS

STRIDE [81]) in the context of component-based software architecture development, a
logical specification of these properties is proposed using an abstract system comput-
ing model (i.e., a technology-independent specification language such as first-order logic,
modal logic) followed by a more concrete specification of the system computing model
and the properties (i.e., a suitable language with automated tool support such as Al-
loy [57]. Finally, a set of security policies are elicited as properties of a modeled system to
constrain the operation of the system and to protect against the corresponding threats.
With regard to our contributions, we deal with C1 ,C2.2 , C3.2 ,C4.2 , C5.2 and C5.4
related to the Research Objective 1 (RO1), the security threats concerns from C6 and
C7 related to the Research Objective 2 (RO2) and the security threats concerns from
C8 and C9 related to the Research Objective 3 (RO3).

To evaluate our approach, we study a set of representative threats based on Microsoft’s
STRIDE [81] threat classification against the components and the communication links in
component-port-connector architecture views [25]. We use MDE abstraction mechanisms
to define and handle software architecture model, security threats and policies through a
meta-model that unifies those concepts. Moreover, we use MDE transformation mecha-
nisms that can adapt and generate different artifacts and representations. In this work,
Eclipse Modeling Framework Technology (EMFT) is used to build the support tools for
our approach.

The remainder of the chapter is organized as follows. Section 5.2 discusses related
work. Then, Section 5.3 describes the methodology to build a design and analysis frame-
work for security architecture threats. Section 5.4 presents how our approach could be
integrated to existing system development life cycle. Section 5.5 presents the property
metamodel for threats and describes the formalization of threats using first-order and
modal logic following the STRIDE categories. Then, Section 5.6 presents the interpreta-
tion of the property metamodel and the logical specification of STRIDE security threats
in Alloy. It also includes a set of policies as architectural solutions. Section 5.7 describes
the architecture of the tool suite. Finally, Section 5.8 concludes.

5.2 Related work

The formalization of threat models and security properties for the verification and valida-
tion of system models has been studied in the recent past. Existing formalization attempts
for threats include the work in [55] using VDM++ to specify the core components of threat

82

5.2. RELATED WORK

modeling techniques including STRIDE , DREAD1, and basic confidentiality, integrity,
availability, authentication, authorization, and non-repudiation security mechanisms. The
work does not describe the whole approach, but rather presents the core ideas and makes
a case for the adoption of formal methods in threat modeling and secure system develop-
ment. Works from authors in [76] used a logic-based representation for describing abstract
security properties which were implemented and verified using Coq [15]. Moreover, [50]
used Software Cost Reduction (SCR) tables to specify and analyze security properties
codifying system requirements.

From another perspective, modeling threat scenarios as vulnerabilities in a system that
makes threats possible is proposed to help understand how attackers may exploit flaws in
the architecture made from well-known references (e.g., STRIDE [81], CAPEC [85], and
CWE [86]). These references informally describe a set of threat scenarios. Each threat
scenario has a signature. This signature specifies the conditions in which a threat can
occur. Thus, it defines the threats according to a certain scenario. However, the threat
scenarios are described informally and thus applying them manually is error-prone and
time consuming. To this end, [7] used OCL [93] to specify signatures of these threats
scenarios to automatically detect threats in the architecture model. Four threat scenar-
ios are studied, including denial of service, tampering, injection, and man-in-the-middle.
The software architecture is modeled in UML and is called the System Description Model
(SDM). The SDM is mapped to the Security Specification Model (SSM) that represents
security mechanisms. Another approach to elaborate security threat identification is pro-
posed by extending use cases to misuse cases [100] in the context of security-oriented
requirements engineering. The idea behind this approach is to describe functions the
system should not allow, eliciting security requirements, and the following constraints on
assets.

Other approaches are proposed in specific development contexts. The work in [124]
describing a framework called FATHoM (FormAlizing THreat Models) which is a state-
based relational model with a logic-based specification of security properties. The goal
of FATHoM is to enable the detection of inconsistencies in threat models, especially in
the domain of virtualized systems. A semi-automated approach for analyzing a security
runtime architecture for security and conformance to an object-oriented implementation,
called SECORIA (SEcurity Conformance of Object-oriented Runtime vIews of Architec-
ture) was proposed in [3]. The approach involves specifying security architectures using
the Acme architecture description language [35, 89] and formalizing constraints using

1DREAD is a risk assessment model for risk rating security threats using five categories: Damage,
Reproducibility, Exploitability, Affected users, and Discoverability.

83

CHAPTER 5. SECURITY THREATS

first-order logic. The constraints focus mostly on global information flow vulnerabilities
such as spoofing, tampering, and information disclosure according to the STRIDE clas-
sification and based on previous work in developing an STRIDE-based security model in
Acme [4]. The security model is based on data-flow diagrams (DFDs).

At the code level, a framework for detecting flaws in code was defined in [13]. The
code is first transformed to STRIDE DFDs using static analysis. Then, based on a “best
practice” repository where threat patterns are stored, an automatic check is performed to
detect the threats and identify security measures that may be applied as annotations to
DFDs to mitigate these threats.

In general, the output of these methods is a set of recommendations and guidelines
to detect, evaluate, and mitigate possible threats. This eases in defining security require-
ments. However, a global closed-loop process has not been applied to be able to iterate
to specify the complete set of requirements. It should be noted that most of these works
have limitations in formalizing threats (only a subset of threat categories are considered),
in reusing and extending them, and in automating the verification process. With this
contribution, we propose to improve the global process and to apply it on a concrete
security architecture design. We also propose tool support to facilitate the iteration of
the loop. Our focus is to apply formal methods with tool support by determining how to
design a secure system with the addition of more formality.

5.3 Methodology for the creation of a design and
analysis framework

In this section, we present an application of the methodology proposed in Section 3.3 to the
development of secure software architecture, from the negative perspective (i.e., threat).
Particularly, we consider architecture threat modeling in the context of component-port-
connector architectures and message passing communication. As depicted in Figure 5.1,
the methodology is composed of several phases and activities. It supports the development
of verified and reusable model libraries to represent threat detection and treatment for
specifying secure software architectures of distributed systems.

Conceptual modeling. We begin by adding a new package called Property to the
software architecture meta-model, introduced in the previous chapter, to capture secu-
rity concerns (problem and solution) as properties of a modeled system. Security threats
concerns (problem and solution) will be provided as property model libraries for reuse.

84

5.3. METHODOLOGY FOR THE CREATION OF A DESIGN AND
ANALYSIS FRAMEWORK

Theoretical Level Development Level
Application

development process

Connector
libraries for reuse Software architecture model

 Define security threats
semantics Formalize security threats

Security threats libraries for
reuse

Develop security policies

Security policy libraries for
reuse

Detect
security threats by reuse

Incorporate
policies by reuse

Secure software architecture
model

S
ecurity threats
references

A
pplication security

requirem
ents

Software architecture
meta-model

Build the DSL & Model
Libraries

Construct the security threats
metamodel Model security threats

Figure 5.1: Methodology for the creation of a design and analysis framework

In other words, security properties will be used to annotate the corresponding software
architecture elements. Then, extending the logical specification of software architecture,
we defined semantics to capture both legitimate and illegitimate message providers and
consumers in the context of component-port-connector distributed systems. Within this
technology-independent setting, we specify classes of threats based on the STRIDE threat
classification so that they can be formalized to verify desirable properties of the compo-
nents, ports, and connectors that will be used to elicit a set of security policies for the
development of secure software architectures for distributed systems.

Development. After constructing the property meta-model and defining the security
threat semantics upon the communication model (message passing connector), we de-
veloped (1) a DSL to model properties and (2) a formal modeling environment as an
interpretation of the meta-model and the logical specification of the STRIDE security
threats. Moreover, we provided a set formal model library for reuse to specify the security
threats and policies. By doing so, we obtain a formal specification of some representative
security threats for each STRIDE threat category. This gives us a set of reusable threat
libraries (properties) capable of identifying security threats in a concrete software archi-
tecture model and for developing specifications of security solutions (policies) to mitigate
these threats. The result is a set of abstract formal security solution modules that can

85

CHAPTER 5. SECURITY THREATS

be easily reused. This formalization step is required to leverage available tool support
used in software and system modeling to enable straightforward instantiation and model
checking capabilities to support the elicitation of an appropriate set of security policies
to treat any detected threats.

5.4 Supporting security-by-design within the SDLC

The overall approach can easily fit well into various systems development life cycles
(SDLCs) as a supplement to the requirements specification and architecture design phases,
as shown in the right part of Figure 5.1. Conceptually, our approach is similar to
the well-known approaches introduced in Section 2.5.1. We build a concrete architec-
ture by instantiating the abstract architecture metamodel into a concrete model for an
application-specific distributed software system, as presented in Section 4.3. Then, using
the application-specific system security requirements, we use the security threat libraries
to identify potential threats in the system model by checking that it satisfies the desired
properties reflecting the security requirements. If we determine that the system model
does not satisfy the security requirements, we use our developed libraries to incorporate
security solutions (policies) to treat those threats in the software architecture model. We
then verify the satisfaction of the security requirements in the updated software architec-
ture model. In this way, we iterate over the requirements specification and architecture
design to revise and improve the set of security policies that will help to mitigate the
threats. As a result, we converge on a complete set of system security policies.

For simplicity, as shown in Figure 5.2, we illustrate the application of the approach
within the Royce iterative waterfall SDLC [118]. The activities defined in Section 5.3 come
as a supplement to the existing phase as follows. (1) The requirements specification is
extended with the “Formalize the (New) Security Threats” and “Develop (New) Security
Policies” activities. These activities concern the modeling framework development process
and should only be done if a new threat or security policy is needed to be added in the
framework, i.e., if a needed threat or security policy is not already defined in the framework
libraries. (2) The architecture design is extended with the “Model Software Architecture”
and “Detect Security Threats” activities. The goal of these activities is to ensure that the
software architecture model satisfies the desired properties for the designed system. (3)
Finally, if we determine that the system design does not satisfy the desired properties,
we take action to revisit the requirements of the system, suggesting new security policies
in the “Incorporate Security Policies” activity to protect against the detected threats. In
this way, we can iterate over the requirements specification and architecture design phases

86

5.5. PROPERTY VIEW

Formalize the (New)
Security Threats

Model Software
Architecture

Detect Security
Threats

Requirements
Spécification

Analysis

Architecture
Design

Software
Design

Implementation

Verification and
Validation

Operation and
Maintenance

Incorporate Security
Policies

Develop (New)
Security Policies

Figure 5.2: The proposed threat modeling approach within the Royce iterative waterfall
SDLC

of the SDLC to revise and improve the architecture design of the system and mitigate the
threats. As a result, the proposed approach enables the generation of formal artifacts early
enough in the lifecycle to apply useful analysis within the design loop, thereby supporting
the principles of security-by design.

5.5 Property view

The software architecture meta-model presented in Section 4.5 is extended with a property
view for describing threats and policies in the form of categories to build property model
libraries for reuse, as visualized in Figure 5.3. A PropertyCategory is a classification of
properties. For instance, Spoofing and Tampering are defined as categories within the
STRIDE library. These libraries are then used as external models to type the properties
of the components and connectors. In addition, we define mitigate as a link between
properties to capture relationships between policies and threats.

In the following, we present the precise definition of a set of threats using first-order
logic and modal logic as a formalism that is abstract and technology-independent. This
provides a more generic and understandable approach with mapping support to different
existing property specification languages used in modeling and software development.

87

CHAPTER 5. SECURITY THREATS

Figure 5.3: Property meta-model with mitigate relationships

5.5.1 Logical specification

In this section we extend the logical specification presented in Section 4.6.1. In the context
of engineering secure systems, we define the following domain to capture the notion of
both legitimate and illegitimate message providers (e.g., inject) and message consumers
(e.g., intercept) of the system messages. These concepts are defined on top of the basic
communication primitives (e.g., send and receive).

Sets

• I is the set of intervals

• D is the set of message payloads is extended with the following predicates:

– has freshness(d, i) indicates that i ∈ I is the interval of freshness of the payload
d ∈ D, i.e. the interval where the payload is considered relevant

• M is the set of messages is extended with the following predicates:

– has src(m, s) indicates that the source of m ∈ M is s ∈ C, where s may not be the
origin of m

– has rcv(m, r) indicates that the recipient of m ∈ M is r ∈ C, where r may not be
the intended receiver of m

88

5.5. PROPERTY VIEW

– has pld(m, d) indicates that m ∈M contains a payload d ∈ D

• A is the set of actions is extended with:

– inject(m) denotes that component c ∈ C adds message m ∈M into the system

– intercept(m) denotes that component c ∈ C gets message m ∈M from the system

– set src(m, s) denotes that component c ∈ C sets the declared source s ∈ C for mes-
sage m ∈M

– set rcv(m, r) denotes that component c ∈ C sets the intended receiver r ∈ C for
message m ∈M

– set pld(m, d) denotes that component c ∈ C sets the payload d ∈ D for message m ∈
M

– get src(m, s) denotes that component c ∈ C gets the declared source s ∈ C from
message m ∈M, where s is not necessarily the true sender

– get rcv(m, r) denotes that component c ∈ C gets the intended receiver r ∈ C from
message m ∈M, where r is not necessarily the actual receiver

– get pld(m, d) denotes that component c ∈ C gets the payload d ∈ D from mes-
sage m ∈M, where d is not necessarily the true payload

Modalities

• Ec(a) is a predicate indicating that action a ∈ A is Enabled for component c ∈ C

• Zc(a) is a predicate indicating that action a ∈ A is authoriZed for component c ∈ C

• Tc(a) is a predicate indicating that component c ∈ C is held accounTable for action
a ∈ A

• I(a, i) is a predicate indicating that action a ∈ A will occur within the Interval i ∈ I

Axioms

• ∀ a ∈ A, ∀ c ∈ C · Hc(a) ⇒ Ec(a) is an axiom that states if an action a happen
for a component c, then a is enabled for c

• ∀ m ∈ M, ∀ c1, c2 ∈ C · Hc2(inject(m)) < Ec1(intercept(m)) is an axiom
that states if a component c1 inject a message m, then before m was injected by a
component c2

89

CHAPTER 5. SECURITY THREATS

• ∀ m ∈ M, ∀ c1, c2 ∈ C · Hc1(set rcv(m, c2)) < Hc1(inject(m)) is an axiom that
states if a component c1 inject a message m, then before c1 set the intended receiver
of m as a component c2

• ∀ m ∈ M, ∀ c1, c2 ∈ C · Hc1(set src(m, c2)) < Hc1(inject(m)) is an axiom that
states if a component c1 inject a message m, then before c1 set the source of m as
a component c2.

• ∀ m ∈M, ∀ c1 ∈ C, ∀ d ∈ D · Hc1(set pld(m, d)) < Hc1(inject(m)) is an axiom
that states if an component c1 injected a message m, then before c1 set the payload
of m as a payload d

• ∀m ∈M, ∀ c1, c2 ∈ C · Hc1(intercept(m)) ∧ has rcv(m, r) < Ec1(get rcv(m, c2))
is an axiom that states if a component c1 is able to get the intended receiver c2 of
message m , then before a component c1 intercepted a message m that contained a
receiver c2

• ∀m ∈M, ∀ c1, c2 ∈ C · Hc1(intercept(m)) ∧ has src(m, r) < Ec1(get src(m, c2))
is an axiom that states if a component c1 is able to get the source c2 of message m

, then before an component c1 intercepted a message m that contained a source c2

• ∀ m ∈M, ∀ c ∈ C, ∀ d ∈ D ·
Hc(intercept(c, m)) ∧ has pld(m, d) < Ec(get pld(m, d))

is an axiom that states if a component c1 is able to get the payload d of message m,
then before a component c1 intercepted a message m that contained a payload d

Macros

• send by(m, s) ≡ Hs(inject(m)) ∧ has src(m, s)

• send to(m, c) ≡ ∃ s ∈ C | send by(m, s) ∧ has rcv(m, c)

• send with(m, d) ≡ ∃ s ∈ C | send by(m, s) ∧ has pld(m, d)

5.5.2 STRIDE security threats

Our intent is to illustrate the approach described in Section 5.3 using representative
threats in the context of a component-port-connector architecture model and message
passing communication. In each of the following sections, we specify a representative
property for each STRIDE category such that the violation of the specified property

90

5.5. PROPERTY VIEW

indicates the presence of the threat. This is not to say that satisfaction of the property
guarantees that the threat is not present, i.e., each the property represents a sufficient
condition for threat presence.

Spoofing. Spoofing refers to the impersonation of a component in the system for the
purpose of misleading other system entities into falsely believing that an attacker is legit-
imate. Spoofing threats violates the authentication objectives of a system. In the context
of message passing communication, spoofing threats take the form of message senders
falsely claiming to be other system components, to entice other components to believe
that the spoofed component is the originator of the message. Therefore, a spoofing threat
can be identified by verifying whether the system ensures that all of the senders of message
are authentic, i.e., the sender of a message is always the originator of the message. For
components c1, c2 ∈ C, we denote this representative property as SenderSpoofing(c1, c2)
which is specified for all messages m ∈M as:

send by(m, c1) < Ec2(get src(m, c1)) (5.1)

This property shows that every message that is received by a component c2 that it
believes was sent by component c1 was actually sent by c1 and not by any other component.
In this way, there is no way in which a malicious component can pretend to be the sender
of the message.

Example of Spoofing instantiation. Recalling our motivating college library website
example (see Section 2.8.1), an example where the Sender Spoofing threat can be found
is when a user is able to send a request to visualize a book page on the web server with the
identity of another user. Consequently, the invalidity of the property SenderSpoofing(User ,

Webserver) would show that the Sender Spoofing threat exists in the system.

Tampering. Tampering refers to the unauthorized modification of data. Tampering
threats violates the integrity objectives of a system. They often involve the modification
of data in transit. Therefore, a tampering threat can be identified by verifying whether
the message that was sent by a sender is the same message that was received by the
receiver, i.e., a message is not altered in transit. For components c1, c2 ∈ C, we denote
this representative property as PayloadTampering(c1, c2) which is specified for all messages
m ∈M and all payloads d ∈ D as:

(send by(m, c1) ∧ send with(m, d)) < Ec2(get pld(m, d)) (5.2)

91

CHAPTER 5. SECURITY THREATS

This property shows that for every received message m with a payload d by a com-
ponent c2 from component c1, there exists a message m that is sent with that exact
payload d.

Example of Tampering instantiation. Coming back to our motivating college library
website example, the Payload Tampering threat can be found, for example, when some-
body is able to modify a request to visualize a book page from a user to the web server.
Therefore, the invalidity of the PayloadTampering(User , Webserver) property would show
that the Payload Tampering threat exists in the system.

Repudiation. Repudiation refers to a component claiming to have not performed an
action that was in fact performed. Repudiation threats result from a lack of audit abil-
ity and accountability in the system. Mitigating repudiation threats requires an ability
to separate legitimate claims from false claims made by system components. Very of-
ten, this involves constructing an audit log that records what happened during system
operation and which components were involved. Therefore, a repudiation threat can be
identified by verifying whether every sent or received message trace exists in the sys-
tem, i.e., for every sent or received message the system holds a component accountable
for this action. For components c1, c2 ∈ C, we denote this representative property as
SendReceiveRepudiation(c1, c2) which is specified for all messages m ∈M as:

Hc1(inject(m)) ⇒ Tc1(inject(m)) ∨
Hc2(intercept(m))⇒ Tc2(intercept(m))

(5.3)

This property shows that for every message m, sent by component c1 or received by
component c2, the system respectively holds the sender c1 accountable for the send action
(inject) of the message m, or the receiver c2 accountable for the receive action (intercept)
of the message m.

Example of Repudiation instantiation. With respect to our motivating college library
website example, an example where the Send/Receive Repudiation threat can be found
is when the web server is able to make a request to the database and nobody is held
accountable for this request. As a result, the invalidity of the SendReceiveRepudiation
(Webserver , Database) property would show that the Send/Receive Repudiation threat
exists in the system.

Information disclosure. Information disclosure refers to the unauthorized exposure
of information to a component for which it is not intended. Information disclosure threats

92

5.5. PROPERTY VIEW

violate the confidentiality objectives of a system. With consideration to message passing
communication, information disclosure threats occur when components other than those
for which a message was intended are able to receive the sent message. Therefore, an infor-
mation disclosure threat can be identified by verifying whether a component other than the
intended receiver(s) is able to receive a message, i.e., all messages are delivered only to the
intended receiver(s). For components c1, c2 ∈ C, we denote this representative property as
PayloadDisclosure
(c1, c2) which is specified for all messages m ∈ M and all components c3 ∈ C such
that c3 ̸= c1 ̸= c2 as:

¬(send by(m, c1) ∧ send to(m, c2)) < Hc3(intercept(m)) (5.4)

This property shows that every message m received (intercepted) by a component c3

cannot be sent by another component c1 to another intended component c2 at any previous
point in time. Thus, there is no way in which the contents of the message can be disclosed
to an unauthorized component.

Example of information disclosure instantiation. Recalling the college library website
example, an example where the Payload Disclosure threat can be found is when somebody
other than the web server is able to intercept and read the content of a request from a user
visualizing a book page on the web server. Consequently, the invalidity of the property
PayloadDisclosure(User , Webserver) would show that the Payload Disclosure threat exists
in the system.

Denial of service. Denial of service refers to the unauthorized withholding of a service
to system components. Denial of service threats violates the availability objectives of
a system. In the context of message passing communication, denial of service threats
may involve blocking the transmission of messages from senders to receivers such that the
receiver never receives any of the messages before their freshness expires, i.e., before the
deadline where the message becomes irrelevant is reached. Therefore, a denial of service
threat can be identified by verifying whether sent messages are delayed, destroyed, or
deleted in transit, preventing them from being received before the freshness of the message
expires or from being received by the intended receiver at all.

For components c1, c2 ∈ C, we denote this representative property as PayloadStaleness
(c1, c2) which is specified for all messages m ∈ M, all payloads d ∈ D, and all intervals
i ∈ I as:

93

CHAPTER 5. SECURITY THREATS

Hc1(inject(m)) ∧ has rcv(m, c2) ∧ has pld(d, m) ∧ has freshness(d, i)⇒
I(Ec2(intercept(c2)m), i)

(5.5)

Put another way, this property states that every message m sent by a component c1

intended for a component c2 and that contains a payload d with a freshness interval i has
the opportunity to be received at some point by the intended receiver c2 in the interval i.
This represents a typical liveness property of the system.

Example of denial of service instantiation. In the context of the college library website
example, the Payload Staleness threat can be found, for example, when a user request
to visualize a book page on the web server is unable to reach the server in an acceptable
time. Consequently, the invalidity of the property PayloadStaleness(User , Webserver)
would show that the Payload Staleness threat exists in the system.

Elevation of privilege. Elevation of privilege refers to the ability of a component to
gain capabilities without proper authorization to have such capabilities. Elevation of priv-
ilege threats violate the authorization objectives of a system. Typically, an elevation of
privilege threat involves a system component being able to perform an action for which
they are not authorized according to the system access control policy. Very often, miti-
gating elevation of privilege attacks involves enforcing the system’s access control policy.
Therefore, an elevation of privilege threat can be identified by verifying whether it is possi-
ble for a component to perform any actions without having the proper authorizations, i.e.,
every component that performs an action (send/receive) has the allowable permissions at
the time the action is performed. For components c1, c2 ∈ C, we denote this representative
property as SendReceiveElevation(c1, c2) which is specified for all messages m ∈M as:

Hc1(inject(m)) ⇒ Zc1(inject(m)) ∨
Hc2(intercept(m))⇒ Zc2(intercept(m))

(5.6)

This property shows that for every message m, sent by component c1 or received
by component c2, there is an authorization for the sender c1 or receiver c2 with the
corresponding permission to perform the action (inject or intercept) with respect to the
specific message m that is being sent or received. In this way, the system verifies that the
access control policy is enforced prior to enabling components to perform specific actions.

Example of elevation of privilege instantiation. Revisiting our motivating college li-

94

5.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

brary website example, the Send/Receive Elevation threat can be found, for example,
when a user requests to visualize a book page on the web server without having the
correct authorization to access this page. As a result, the invalidity of the property
SendReceiveElevation(User , Webserver) would show that the Send/Receive Elevation threat
exists in the system.

At this level of specification, we are able to specify the STRIDE set of security threats as
properties of the system architecture model, using first-order and modal logic as an abstract
and technology-independent formalism that can be interpreted in appropriate formal tooled
languages.

5.6 Formal specification and analysis in Alloy

In this section, we provide the specification and verification of a representative threat from
each STRIDE threat category using Alloy. By operating as a counterexample generator,
when the Alloy Analyzer identifies the violation of a property, it indicates the existence
of a threat. In much the same way, by operating as a model checker, the Alloy Analyzer
enables the use of a property as a security policy to indicate the absence of the threat. This
enables us to construct models incrementally, allowing rapid iterations between modeling
and analysis when writing a specification. For more formal definitions and examples on
Alloy, the reader is referred to Section 2.6.2.

5.6.1 Formalizing the negative perspective of the property meta-
model

We encode the set of actions described in Section 5.5.1 considering the notion of execution
steps in the context of an asynchronous message-passing system as follows:

• T is the sequence of execution steps

• Each macro mc(param1 , . . . , paramn) is transformed to mc(param1 , . . . , paramn, t)
denoting its relation to the execution step t ∈ T . For example, injected(c, m) is
transformed to injected(c, m, t) indicating that a sender c ∈ C added a message
m ∈M into the system before the step t ∈ T

The MsgPassing concept is then extended with a set of attributes defined on the basis
of these actions and their corresponding steps that should be logged when they occur.

95

CHAPTER 5. SECURITY THREATS

Listing 5.1 depicts the presentation of the new concept called MsgPassingConstraint and
the Inject action in Alloy.

1 sig MsgPassingConstraint extends MsgPassing {
2 set_pld : Component -> Tick ,
3 set_rcv : Component -> Tick ,
4 set_src : Component -> Tick ,
5 get_pld : Component -> Tick ,
6 get_rcv : Component -> Tick ,
7 get_src : Component -> Tick
8 }{
9 all c:Component , t:Tick | got_src .t = c => some m:MsgPassing , s:

Component | get_src [c,m,s,t]
10 ...}
11 pred E_inject [c:Component ,m:MsgPassing , t:Tick] {
12 some con: ConnectorMPS , p:c.uses
13 | p in con. connects .t and p.kind = OUTPUT
14 and m. payload .type = p. realizes . datatypes }
15 pred H_inject [c1:Component ,m:MsgPassing , t:Tick] {
16 E_inject [c1 ,m,t]
17 c1.send[m.receiver ,m.payload ,t]}
18 pred injected [c:Component ,m:MsgPassing , t1:Tick] {
19 one t2:t1.prevs | inject [c,m,t2]}

Listing 5.1: Message data and example of action in Alloy

We encode set of the axioms describes in Section 5.5.1 as facts (i.e., always true for any
model instance). Listing 5.2 depicts the corresponding Alloy code for one of the axioms.

1 fact {
2 all m: MsgPassingConstraint , c1:Component , t1:Tick |
3 H_inject [c1 ,m,t1] =>
4 some c2:Component , t2:t1.prevs | H_set_src [c1 ,m,c2 ,t2]
5 }

Listing 5.2: Axiom in Alloy

Threats can now be defined as properties in terms of a system specification, i.e., in
terms of enabled actions, messages, components and connectors.

We encode the property view as described in Section 5.5 by defining the corresponding
concepts ComponentProperty and ConnectorProperty as abstract signatures in Alloy. For
each one, the helper function holds is used to easily verify that the property holds in a
given model. As we shall see, security threats and policies will be encoded as properties
(see Listing 5.4).

96

5.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

1 abstract sig ComponentProperty {
2 comp: one Component ,
3 payl: one Payload }
4 fun ComponentProperty .holds[c1:one Component ,p: one Payload]: set

ComponentProperty {
5 { m:this { m.comp = c1 and m.payl = p }}}
6 abstract sig ConnectorProperty {
7 conn: one Connector ,
8 payl: one Payload
9 }{ comp1 != comp2 }

10 fun ConnectorProperty .comp1 : one Component {{ c: Component | this.conn.
portI in c.uses }}

11 fun ConnectorProperty .comp2 : one Component {{ c: Component | this.conn.
portO in c.uses }}

12 fun ConnectorProperty .holds[c1 ,c2:one Component ,p: one Payload]: set
ConnectorProperty {

13 { m:this { m.comp1 = c1 and m.comp2 = c2 and m.payl = p }}}

Listing 5.3: Property view concepts in Alloy

5.6.2 STRIDE security threats

We aim to build a set of reusable libraries for threat detection and treatment. To do
so, we model the threat categories presented in Section 5.5 in Alloy, using constructions
such as Predicate, Assertion, and Fact. Threats will be specified as constraints in the
model. Remember that during the logical specification, each threat category is associated
with a representative property such that the violation of the specified property indicates
the presence of the threat. Therefore, each threat is associated with a property defined
as a predicate to map the logical definition of the corresponding threat property to the
Alloy model describing the targeted software architecture and communication system
(e.g., NotBeSpoofed). Then, the presence of a threat, as a result of the violation of the
property, is detected by the Alloy Analyzer through an assertion finding a counterexample.
As a result, an appropriate security property is defined as a predicate (e.g., spoofProof)
to codify a security policy to constrain the operation of the system and to protect against
the corresponding threat.

Spoofing. The Sender Spoofing threat is considered within the connector and can be
identified by checking whether the communication system provided by the connector en-
sures that all messages transmitted through this connector have authentic senders. The

97

CHAPTER 5. SECURITY THREATS

NotBeSpoofed property is defined as a predicate according to the logical specification of
the Sender Spoofing threat (Expression (5.1)) and the system computing model. Note
that in Listing 5.4, while the Sender Spoofing threat is considered within the connector,
we define the NotBeSpoofed property (Lines 3-6) with respect to two components (c1
and c2) representing the endpoints of the connector being considered. This enables us to
conform to the abstract system computing model described in Section 5.5.1.

1 sig SenderSpoofing extends ConnectorProperty {}{
2 not NotBeSpoofed [comp1 ,comp2 ,payl]}
3 pred NotBeSpoofed [c1 ,c2:Component , p: Payload] {
4 let m={m: MsgPassing | m. payload = p}|
5 all t2: Tick-tick /first | some t1:t2.prevs |
6 E_get_src [c2 ,m,c1 ,t2] implies send_by [m,c1 ,t1] }
7 assert MPSCanBeSpoofed {
8 all c1 ,c2:Component , p: Payload |
9 | no SenderSpoofing .holds[c1 ,c2 ,d]}

Listing 5.4: Detection of spoofing

Figure 5.4: Spoofing counterexample provided by the Alloy Analyzer

The Alloy Analyzer detects a Sender Spoofing threat by finding a counterexample, as
a violation of the NotBeSpoofed property. Figure 5.4 shows a model where the Sender
Spoofing occurs. We proceed by defining a security policy as a predicate to protect
against the Sender Spoofing threat. The idea is to ensure that no component can send a
message by pretending to be some other component. The spoofProof property is defined
as a predicate on the connector to ensure the authenticity of the sender of each message
transmitted through this connector (Listing 5.5, Lines 1-4).

98

5.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

1 pred ConnectorMPS . spoofProof {
2 all mp:MsgPassing , t:Tick |
3 mp in this. buffer .t implies
4 mp. sender = mp. origin_sender // The sender is authentic }
5 assert MPSCanNotBeSpoofed {
6 (all c: ConnectorMPS | c. spoofProof) implies
7 (all c1 ,c2:Component , p: Payload |
8 | no SenderSpoofing .holds[c1 ,c2 ,d])}

Listing 5.5: spoofProof property

According to the Alloy Analyzer, no counterexample was found. The satisfaction of the
spoofProof property allows the fulfillment of the corresponding security policy to protect
against the Sender Spoofing threat.

Tampering. The Payload Tampering threat is considered within the connector and can
be identified by checking whether the communication system provided by the connector
ensures that all messages transmitted through this connector are not altered in transit.
The NotBeAltered property is defined as a predicate according to the logical specification
of the Payload Tampering threat (Expression (5.2)) and the system computing model
(Listing 5.4). We define this property (Lines 3-7) with respect to two components (c1
and c2) representing the endpoints of the connector being considered for tampering threat.
Once again, this is done to conform to the abstract system computing model described
in Section 5.5.1.

1 sig PayloadTampering extends ConnectorProperty {}{
2 not NotBeAltered [comp1 ,comp2 ,payl]}
3 pred NotBeAltered [c1 ,c2:Component , p: Payload] {
4 all p: Payload | let m = {m: MsgPassing | m. payload = d}{
5 all t2: Tick-tick /first | some t1:t2.prevs |
6 (E_get_pld [c2 ,m,p,t2]) implies
7 (send_by [m,c1 , t1] and send_with [m,p,t1])}
8 assert MPSCanBeAltered {
9 all c1 ,c2:Component , p: Payload |

10 no PayloadTampering .holds[c1 ,c2 ,d}

Listing 5.6: Detection of tampering

The Alloy Analyzer detects a Payload Tampering threat by finding a counterexample,
as a violation of the NotBeAltered property, showing a model where the tampering occurs.
We proceed by defining a security policy as a predicate to protect against the Payload

99

CHAPTER 5. SECURITY THREATS

Tampering threat. The idea is to ensure that no component can alter a message during
transmission. The tamperProof property is defined as a predicate on the connector to
ensure that the message that was sent by a sender is the same message that was received
by the receiver through this connector (Listing 5.7, Lines 1-10).

1 pred ConnectorMPS . tamperProof {
2 all t:Tick , mp: MsgPassing |
3 mp in this. buffer .t
4 implies (
5 no mp ’: MsgPassing-mp , t’:t.prevs |
6 mp ’. sender = mp. sender
7 and mp ’. receiver = mp. receiver
8 and mp ’. sent = mp.sent
9 and mp ’ in this. buffer .t’

10)}
11 assert MPSDataCanNotBeAltered {
12 (all c: ConnectorMPS | c. tamperProof) implies
13 (all c1 ,c2:Component , p: Payload |
14 no PayloadTampering .holds[c1 ,c2 ,d])}

Listing 5.7: tamperProof property

According to the Alloy Analyzer, no counterexample was found. The satisfaction of
the tamperProof property allows the fulfillment of the corresponding security policy to
protect against the Payload Tampering threat.

Repudiation. The Send/Receive Repudiation threat is considered within the compo-
nent and can be identified by checking whether the system holds a component accountable
for each inject and intercept action that occurred. We define a new action T inject (resp.
T intercept) as an abstract security mechanism to define the Tc(a) modality. The Not-
BeRepudiated property is defined as a predicate according to the logical specification of
the Send/Receive Repudiation threat (Expression (5.3)) and the system computing model
(Listing 5.8, Lines 3-9).

1 sig SendReceiveRepudiation extends ComponentProperty {}{
2 not NotBeRepudiated [comp ,payl]}
3 pred NotBeRepudiated [c:Component , p: Payload]{
4 all t1:Tick - tick/last , t2:Tick - tick/last |
5 let m = {m: MsgPassing | m. payload = p }{
6 (inject [c,m, t1] => all t1 ’: t1.nexts | T_inject [c,m,t1 ’])
7 or (intercept [c,m, t2] => all t2 ’:t2.nexts | T_intercept [c,m,t2 ’])}
8 }

100

5.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

9 assert MPSCanBeRepudiated {
10 all c:Component , p: Payload |
11 no SendReceiveRepudiation .holds[c,d]}

Listing 5.8: Detection of repudiation

The Alloy Analyzer detects a Send/Receive Repudiation threat by finding a coun-
terexample, as a violation of the NotBeRepudiated property, showing a model where the
repudiation occurs. We proceed by defining a security policy as a predicate to protect
against the Send/Receive Repudiation threat. The idea is to ensure that no component
can deny an action that was in fact performed. The repudiationProof property is defined
as a predicate on the component to ensure that every sent or received message that the
system got a trace of the corresponding action (Listing 5.9, Lines 1-5).

1 pred Component . repudiationProof {
2 all m:MsgPassing , t:Tick |
3 inject [this , m, t] implies Log. addEntry [m, t]
4 all m:MsgPassing , t:Tick |
5 intercept [this ,m, t] implies Log. addEntry [m, t]
6 }
7 assert MPSCanNotBeRepudiated {
8 (all c: Component | c. repudiationProof) implies
9 (all c:Component , p: Payload |

10 no SendReceiveRepudiation .holds[c,d])}

Listing 5.9: repudiationProof property

According to the Alloy Analyzer, no counterexample was found. The satisfaction of
the repudiationProof property allows the fulfillment of the corresponding security policy
to protect against the Send/Receive Repudiation threat.

Information disclosure. The Payload Disclosure threat is considered within the con-
nector and can be identified by checking whether the communication system provided by
the connector ensures that all messages transmitted through this connector are delivered
only to the intended receiver(s). The NotBeIntercepted property is defined as a predicate
according to the logical specification of the Payload Disclosure threat (Expression (5.4))
and the system computing model. To conform to the abstract system computing model
described in Section 5.5.1, we define the NotBeIntercepted property in Listing 5.10 (Lines
3-7) with respect to two components (c1 and c2) representing the endpoints of the con-
nector being considered for the Payload Disclosure threat in a manner similar to what
was done for the Sender Spoofing and Payload Tampering threats above.

101

CHAPTER 5. SECURITY THREATS

1 sig PayloadDisclosure extends ConnectorProperty {}{
2 not NotBeIntercepted [comp1 ,comp2 ,payl]}
3 pred NotBeIntercepted [c1 ,c2:Component , p: Payload] {
4 all c3: Component-c1-c2 | let m = {m: MsgPassing | m. payload = d } |
5 all t2: Tick-tick /first | some t1:t2.prevs |
6 H_intercept [c3 ,m,t2] implies
7 not (send_by [m,c1 ,t1] and send_to [m,c2 ,t1])}
8 assert MPSCanBeIntercepted {
9 all c1 ,c2:Component , p: Payload |

10 no PayloadDisclosure .holds[c1 ,c2 ,d]}

Listing 5.10: Detection of information disclosure

The Alloy Analyzer detects a Payload Disclosure threat by finding a counterexam-
ple, as a violation of the NotBeIntercepted property, showing a model where the Payload
Disclosure occurs. We proceed by defining a security policy as a predicate to protect
against the Payload Disclosure threat. The idea is to ensure that all messages trans-
mitted through this connector cannot be intercepted by an undesired component. The
informationDisclosureProof property is defined as a predicate on the connector to ensure
that there is no component other than the intended receiver(s) that is able to receive a
message sent through this connector (Listing 5.11, Lines 1-4).

1 pred ConnectorMPS . informationDisclosureProof {
2 all mp:MsgPassing , t:Tick |
3 (mp in this. buffer .t)
4 implies this. connects .t = mp. origin_sender .uses + mp. receiver .uses}
5 assert MPSCanNotBeIntercepted {
6 (all c: ConnectorMPS | c. informationDisclosureProof) implies
7 (all c1 ,c2:Component , p: Payload |
8 no PayloadDisclosure .holds[c1 ,c2 ,d])}

Listing 5.11: informationDisclosureProof property

According to the Alloy Analyzer, no counterexample was found. The satisfaction of the
informationDisclosureProof property allows the fulfillment of the corresponding security
policy to protect against the Payload Disclosure threat.

Denial of service. The Payload Staleness threat is considered within the connector
and can be identified by checking whether the communication system provided by the
connector ensures that every message that is sent through this connector will be eventually
received by the intended receiver before the content of the message lost its freshness. The

102

5.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

NotBeReceivedStale property is defined as a predicate according to the logical specification
of the Payload Staleness threat (Expression (5.5)) and the system computing model. We
define the NotBeReceivedStale property in Listing 5.12 (Lines 3-5) with respect to two
components (c1 and c2) representing the endpoints of the connector being considered
for the Payload Staleness threat to conform to the abstract system computing model
described in Section 5.5.1.

1 sig PayloadStaleness extends ConnectorProperty {}{
2 not NotBeReceivedStale [comp1 ,comp2 ,payl]}
3 pred NotBeReceivedStale [c1 ,c2:Component , d: Payload] {
4 all i:Interval , t1:Tick , t2:t1.nexts | let m = {m: MsgPassing | m.

payload = d }{
5 inject [c1 ,m,t1] and m. receiver = c2 and d. freshness = i implies

E_intercept [c2 ,m,t2] and I_in[t2 , d. freshness]}}
6 assert MPSCanBeStale {
7 all c1 ,c2:Component , d: Payload |
8 no PayloadStaleness .holds[c1 ,c2 ,d]}

Listing 5.12: Detection of denial of service

The Alloy Analyzer detects a Payload Staleness threat by finding a counterexample,
as a violation of the NotBeReceivedStale property, showing a model where the denial of
service occurs. We proceed by defining a security policy as a predicate to protect against
the Payload Staleness threat. The idea is to ensure that all messages transmitted through
this connector are not being delayed, destroyed or deleted (i.e., dropped) in transit and
made available to the receiver(s) before it content becomes stale.

The staleProof property is defined as a predicate on the connector to ensure that all
messages transmitted through this connector have the opportunity to be received by the
intended receiver(s) before their content loses their freshness (Listing 5.13, Lines 1-3).

1 pred ConnectorMPS . staleProof {
2 all t:Tick - tick/last , c:Component , mp: MsgPassing
3 | mp in this. buffer .t implies ((mp in this. buffer .(t.next) and mp.

payload . freshness .end.lt[t.next]) or (mp. receiver). receive [c,mp
.payload ,t.next])}

4 assert MPSCanNotBeStale {
5 (all c: ConnectorMPS | c. staleProof)
6 implies (all c1 ,c2:Component , d: Payload |
7 no PayloadStaleness .holds[c1 ,c2 ,d])}

Listing 5.13: staleProof property

103

CHAPTER 5. SECURITY THREATS

According to the Alloy Analyzer, no counterexample was found. The satisfaction of the
staleProof property allows the fulfillment of the corresponding security policy to protect
against the Payload Staleness threat.

Elevation of privilege. The Send/Receive Elevation threat is considered within the
component and can be identified by checking that every component that performs an
action (inject/intercept) is authorized. We define a new action Z inject (resp. Z intercept)
as an abstract security mechanism to define the Zc(a) modality. The NoEop property is
defined as a predicate according to the logical specification of the Send/Receive Elevation
threat (Expression (5.6)) and the system computing model (Listing 5.14, Lines 3-7).

1 sig SendReceiveElevation extends ComponentProperty {}{
2 not NoEop[comp , payl]}
3 pred NoEop[c:Component , p: Payload] {
4 all t1:Tick , t2:Tick |
5 let m = {m: MsgPassing | m. payload = p }{
6 (inject [c,m,t1] implies Z_inject [c,m])
7 or (intercept [c,m,t2] implies Z_intercept [c,m])}}
8 assert MPSCanBeEop {
9 all c:Component , p: Payload | no SendReceiveElevation .holds[c,d]}

Listing 5.14: Detection of elevation of privilege

The Alloy Analyzer detects a Send/Receive Elevation threat by finding a counterex-
ample, as a violation of the NoEoP property, showing a model where the Send/Receive
Elevation occurs. We proceed by defining a security policy as a predicate to protect
against the Send/Receive Elevation threat. The idea is to ensure that it is not possible
for any system component to perform any actions without having the proper authoriza-
tions according to an access control list. The EoPProof property is defined as a predicate
on the component to ensure that all the actions performed by this component are allowed
(Listing 5.15, Lines 1-5).

1 pred Component . EoPProof {
2 all m:MsgPassing , t:Tick |
3 inject [this ,m,t] implies Z_inject [this ,m]
4 all m:MsgPassing , t:Tick |
5 intercept [this ,m,t] implies Z_intercept [this ,m]
6 assert MPSCanNotBeEop {
7 (all c: Component | c. EoPProof) implies
8 (all c1 ,c2:Component , p: Payload | no SendReceiveElevation .holds[c,d])}

Listing 5.15: EoPProof property

104

5.7. TOOL SUPPORT

According to the Alloy Analyzer, no counterexample was found. The satisfaction of the
EoPProof property allows the fulfillment of the corresponding security policy to protect
against the Send/Receive Elevation threat.

At this level of specification, we are able to: (1) formally represent an interpretation of
the STRIDE set of threats described in Section 5.5 and develop a set of policies to treat
them as properties of the architecture model in Alloy, (2) provide the properties as formal
model libraries to support reuse, and (3) offer methods and functions to easily verify that
the properties hold in a given architecture model fostering reuse.

5.7 Tool support

We have implemented a prototype to support the proposed approach (Section 5.3) as
an Eclipse plug-in. Our starting point is the software architecture metamodel presented
in Section 5.5.1 as the metamodel for a software architecture DSL. The metamodel de-
scribes the abstract syntax of the DSL, by capturing the concepts of the component-port-
connector software architecture domain and how the concepts are related.

Figure 5.5: Tool support architecture and artifacts of the approach

105

CHAPTER 5. SECURITY THREATS

The architecture of the tool, as shown in Figure 5.5, is composed of two main blocks:
(1) Modeling framework block and (2) Application development block. Each block is
composed of a set of modules to support the corresponding set of activities (the numbers
in parentheses correspond to the activity numbers in Figure 5.5).

5.7.1 Modeling framework block

The first block is dedicated to supporting four activities. Activity A1.1 is responsible
for creating the DSL metamodel. The resulting metamodel is used to formally define (in
Alloy) the static and behavioral semantics, based upon the DSL metamodel according to
the procedure discussed in Section 5.6. We will name this definition the formal metamodel
(A1.2). Furthermore, reusable threat model libraries and security policies model libraries
are also defined as Alloy models according to the procedure discussed in Section 5.6.2
(A1.3). We will name this definition the formal model libraries. The last activity (A1.4)
is the definition of a set of DSL model libraries from the Alloy specification of threats and
policies (formal model libraries), using the property view of the DSL metamodel (Figure).
Each threat property is associated with a set of security policies to mitigate it, during A1.3.
As an example, we use spoofing as an instance of PropertyCategory, senderSpoofing
as an instance of the ConnectorProperty within the StrideThreat library and spoofProof
as an instance of the ConnectorProperty within the SecurityPolicy library. Finally, we set
up that the spoofProof requirement mitigates the senderSpoofing threat. To support
these four activities, we used EMF, Xtext to develop the DSL metamodel, and the Alloy
Analyzer to encode the corresponding formal metamodel. No further implementation was
required.

5.7.2 Application development block

The second block is dedicated to supporting eight activities. Activity A2.1 allows the de-
signer to model a software architecture (DSL model) conforming to the DSL metamodel,
where A2.2 allows to integrate the threats specification reusing the already developed
threat model libraries (A1.4) as depicts in Figure5.6 for the college library web applica-
tion.

Then, A2.3 is the generation of a formal model (in Alloy) from a DSL model, through
a transformation engine. The Alloy Analyzer is then invoked, with several iterations, to
detect the targeted threat (A2.4) and the report on the detected threats may be generated
as an HTML document (A2.5), such as visualized in Figure 5.8. The report is then
analyzed (A2.6) and A2.7 allows the designer to add the corresponding security policies

106

5.7. TOOL SUPPORT

Figure 5.6: Definition of the security requirements using threats modeling for the college
library web application

to the DSL model reusing the DSL model libraries and the mitigation relationship between
properties (A1.4). The resulting DSL model is then transformed to a formal Alloy model
(A2.3), where the formal definition of the corresponding security policy is automatically
added in the produced Alloy software architecture model from their DSL definitions. At
the end of mitigation (i.e., when no counterexample was found when the Alloy Analyzer
is invoked), the security policies report is generated as an HTML document (A2.8), as
visualized in Figure 5.9.

To support these eight activities, we developed a textual editor to model the archi-
tecture of the system using EMF and Xtext. In addition, the textual editor provides
auto-completion for the manual integration of the threat library (A2.2), proposing the
possible threat categories and properties for a software architecture elements, when the
designer is typing the elements. We also developed two transformation engines to gener-
ate the formal Alloy model (A2.3) and the HTML reports using Xtend (A2.5 and A2.8).
The transformation process takes advantage of the template feature provided by Xtend
and consists of a set of transformation rules that are applied for each concept (using tree
traversal) on a DSL model to generate a Alloy formal model. Figure 5.7 shows an example
of such a rules for DSL Model to generate a corresponding Alloy formal model. The gen-
eration process allows to automatically incorporate the formal definition of the targeted

107

CHAPTER 5. SECURITY THREATS

threats from their DSL definition in the produced Alloy software architecture model as
described in Listing 7.3. Finally, the Alloy Analyzer is used to verify the resulting models
and to generate counterexamples.

Figure 5.7: Transformations supporting the generation of an Alloy for threats from a DSL
model using Xtend

Figure 5.8: Threat report showing the identified threats for the college library web appli-
cation

108

5.8. CONCLUSION

Figure 5.9: Security policy report showing the suggested security requirements to mitigate
the identified security threats for the college library web application (Figure 5.8)

Putting all this together and using the developed tooled framework, we are able to: (1)
model security requirements from the negative vision using the STRIDE security threats
at the architecture design level using a domain-specific language, (2) generate an interpre-
tation of the resulted software architecture model and properties in Alloy, (3) verify the
satisfaction of a set of security requirements for a concrete application through reusable
model of previously specified and verified security threat, (4) treat the detected threats us-
ing appropriate policy models, and (5) generate new artifacts as feedback on the software
architecture model and its security.

5.8 Conclusion

We proposed an approach to threat specification, detection, and treatment in component-
based software architecture models following two levels of specification: (1) logical specifi-
cation of threats using first-order and modal logic as a technology-independent formalism;
(2) interpretation of the logical specification in Alloy as a tooled language and (3) for

109

CHAPTER 5. SECURITY THREATS

each representative STRIDE security property, an appropriate security policy to treat the
threat.

We keep the domain specifying threat categories at an abstract level to remain inde-
pendent of any particular technology or implementation of the model aligned with the
proposed approach. This can allow these formal specifications to apply to different im-
plementations or architectures provided they support the notion of message-passing com-
munication which fosters reuse. As a side effect, for each representative STRIDE threat,
an appropriate property codifying the security policy protecting against the threat is de-
fined and verified, where the violation of such a property indicates the presence of threat.
The proposed approach can aid in developing reliable software systems. For example, it
can help system designers to rework their designs to eliminate or mitigate the identified
threats and/or to aid in selecting appropriate security and reliability controls.

Furthermore, we walked through an MDE-based prototype connected to a tooled for-
mal language (Alloy) to support the proposed approach. An example of this tool suite
is constructed using EMFT, Xtext, and Xtend and is currently provided in the form of
Eclipse plug-ins. The combined formal modeling and MDE to specify threats and develop
their targeted system security requirements allows to develop an accurate analysis, for
evaluation and/or certification.

110

Chapter 6

Security objectives

Contents
6.1 Introduction . 111

6.2 Related work . 112

6.3 Methodology for the creation of a design and analysis frame-
work . 114

6.4 Supporting security-by-design within the SDLC 115

6.5 Property view . 117

6.6 Formal specification and analysis in Alloy 120

6.7 Formal specification and analysis in Coq 127

6.8 Tool Support . 137

6.9 Conclusion . 144

6.1 Introduction

The current practice to express security statements from the positive perspective is given
in the form of a set of desirable security properties using common taxonomies such as
CIAA. Security solutions are then being introduced according to expected security prop-
erties.

In this chapter, we propose to use formal methods for the precise specification and
analysis of security architecture requirements as properties of a modeled system. Starting
from an informal description of a security objective (e.g., from a standard) in the context
of component-based software architecture development, a logical specification of these

111

CHAPTER 6. SECURITY OBJECTIVES

objectives is proposed using an abstract system computing model followed by a more
concrete specification of the system computing model and the objectives. Finally, a set
of security policies are defined as abstract security mechanisms to be enforced within
the system specification. They are represented in the form of assumptions of a modeled
system to constrain its operation and to guarantee the corresponding security objectives.
With regard to our contributions, we deal with C1 ,C2.2 , C3.2 ,C4.2 , C5.3 and C5.4
related to the Research Objective 1 (RO1), the security objectives concerns from C6
and C7 related to the Research Objective 2 (RO2) and the security objectives concerns
from C8 and C9 related to the Research Objective 3 (RO3).

To evaluate our approach, we study a set of representative security objectives based on
the CIAA quartet classification targeting the components and the communication links
in component-port-connector architecture views [25]. We use MDE abstraction mecha-
nisms to define and handle software architecture model, security objectives and policies
through a meta-model that unifies those concepts. Moreover, we use MDE transformation
mechanisms that can adapt and generate different artifacts and representations. Eclipse
Modeling Framework Technology (EMFT) is used to build the support tools for our ap-
proach.

The remainder of the chapter is organized as follows. Section 6.2 discusses related
work. Then, Section 6.3 describes the methodology to build a design and analysis frame-
work for security architecture objectives. Section 6.4 presents how our approach could
be integrated to existing system development life cycle. Section 6.5 describes the for-
malization of security objectives using first-order and modal logic following the CIAA
classification. Then, Section 6.6 presents the interpretation of the property metamodel
and the logical specification of the CIAA security objectives in Alloy. Section 6.7 presents
an additional interpretation of the system computing model and a formalization and anal-
ysis of an example of confidentiality objective in Coq. It also includes a set of policies as
architectural solutions. Section 6.8 describes the architecture of the tool suite. Finally,
Section 6.9 concludes.

6.2 Related work

In system and software engineering, formal methods are used for the precise specification
of the modeling artifacts across the development life cycle for validation purposes [112],
particularly in the development of security-critical systems [71, 27]. Regarding the verifi-
cation of security properties, early work discusses the verification of cryptographic proto-
cols and is based on an abstract (term-based) representation of cryptographic primitives

112

6.2. RELATED WORK

that can be automatically verified using model checking and theorem proving tools. One
research line in this category is authentication logics, the first of these logics being the
BAN Logic [20]. The Inductive Approach by Paulson [107] started another research line.
The Security Modeling Framework (SeMF) developed by Fraunhofer SIT [34] rigorously
defines security properties in terms of sequences of actions that are performed by a set of
agents (e.g., client, server). Recently, in [45] the authors used SeMF for the precise spec-
ification of security patterns, starting from a pattern description language and providing
a validation mechanism to enable the verification of security properties.

More relevant to our topic, works from authors in [76] used a logic-based representation
for describing abstract security properties which were implemented and verified using
Coq [15]. The ANR SELKIS project [72] offers a method for analyzing and designing
secure Information Systems (IS) by addressing security requirements from the earliest
abstraction stages of the development. The method is compliant with MDE and takes
advantage of existing formal languages, such as B, enabling the use of formal verification
techniques to ensure, on the one hand, the consistency and adequacy of security policies
with respect to functional business specifications and, on the other hand, the consistency
of the implementation with respect to the specification.

There has been a renewed interest in how to support the Twin Peaks model [9] in
a wide range of aspects, such as theoretical frameworks for relating requirements and
architecture, tools and techniques such as goal-oriented inference and uncertainty man-
agement, problem frames and service composition. There has also been approaches for
applying the Twin Peaks model in the context of security [52]. Moreover, [50] used Soft-
ware Cost Reduction (SCR) tables to specify and analyze security properties codifying
system requirements.

A forefront approach is the work of [64] which defines a UML profile that authorizes the
expression of information related to security using UML diagrams. The UMLsec profile
has been established using three mechanisms of UML extensions which are stereotypes,
tagged values attached to the stereotypes and constraints. These mechanisms define
generic security properties (Confidentiality, Integrity, Data flow security, Access control,
Auditability and Traceability). These properties are verified during the analysis of the
design against an adversary model.

To the best of our knowledge, none of the above-described approaches is able to inte-
grate the security solution validation into the MDE refinement process of the application.
In contrast to other formal security engineering methods [71, 107, 27], our work is not
following the attack nor the threat-based approaches. Its basis is a set of desired secu-
rity properties and associated assumptions. With our approach it is possible to validate

113

CHAPTER 6. SECURITY OBJECTIVES

if properties like authenticity or confidentiality hold under given assumptions that have
been represented basically by appropriate security policies. Our added value is that the
analysis does not only check if the needed security policies exist, but also that they are
correctly used to fulfill the security requirements. The side benefit in case a stated as-
sumption does not hold is that possible consequences in regard to security properties
can be estimated. The verification is conducted mostly within Alloy and the resulted
verification artifacts will be utilized by the designer as input to the system development
process.

6.3 Methodology for the creation of a design and
analysis framework

In this section, we present an application of the methodology proposed in Section 3.3
to the development of secure software architecture, from the positive perspective (i.e.,
objectives). Particularly, we consider architecture security objectives modeling in the
context of component-port-connector architectures and message passing communication.
As depicted in Figure 6.1, the methodology is composed of several phases and activi-
ties. It supports the development of verified and reusable model libraries to represent
security objectives violation and treatment for specifying secure software architectures of
distributed systems.

Conceptual modeling. We begin by updating the Property package used for security
threats introduced in the previous chapter, to capture security objectives (problem and
solution) also as properties of a modeled system. Then, using the logical specification
introduced in the context of threat modeling, we defined classes of security objectives
based on the CIAA reference. In the context of this work, the security objectives are
specified in terms of a set of desirable security properties, where security requirements as
then introduced according to expected security objectives.

Development. After the update of the property meta-model and defining the security
objectives semantics upon the communication model (message passing connector), we de-
veloped (1) a new DSL to model properties from the positive perspective and (2) a formal
modeling environment as an interpretation of the meta-model and the logical specification
of the CIAA security objectives using Alloy. We also developed an interpretation of the
system computing model and an example of a confidentiality objective in Coq. Moreover,

114

6.4. SUPPORTING SECURITY-BY-DESIGN WITHIN THE SDLC

Application
development process

Connector
libraries for reuse Software architecture model

 Define security objective
semantics Formalize security objectives

Security objective libraries for
reuse

Develop security policies

Security policy libraries for
reuse

Detect
security issues by reuse

Incorporate
policies by reuse

Secure software architecture
model

S
ecurity objectives

references

A
pplication security

requirem
ents

Software architecture
meta-model

Theoretical Level Development Level

 Construct the
 security objectives

 metamodel

Build the DSL & Model
Libraries Model security objectives

Figure 6.1: The proposed approach development process for security objectives

we provided a set formal model library for reuse to specify the security objectives and
policies. By doing so, we obtain a formal specification of some representative security
objectives for each CIAA objective category. This gives us a set of reusable security ob-
jectives libraries (properties) capable of identifying the violation of the desired security
objective in a concrete software architecture model and for developing specifications of
security solutions (policies) to satisfy them. The result is a set of abstract formal security
solution modules that can be easily reused. This formalization step is required to leverage
available tool support used in software and system modeling and to enable straightforward
instantiation and model checking capabilities to support the elicitation of an appropriate
set of security policies to treat any detected security issues.

6.4 Supporting security-by-design within the SDLC

The overall approach can easily fit well into various systems development life cycles
(SDLCs) as a supplement to the requirements specification and architecture design phases,
as shown in the right part of Figure 6.1. Starting from the software architecture model ob-
tained from the approach presented in Section 4.3, we use the security objectives libraries
to identify potential security issues in the system model by checking that it satisfies the

115

CHAPTER 6. SECURITY OBJECTIVES

desired properties. If the model does not satisfy the properties, we use our developed
libraries to suggest new security policy to treat the identified security issues.

Formalize the (New)
Security Objectives

Model Software
Architecture

Analyse Security
Objectives

Requirements
Spécification

Analysis

Architecture
Design

Software
Design

Implementation

Verification and
Validation

Operation and
Maintenance

Incorporate Security
Policies

Develop (New)
Security Policies

Figure 6.2: The proposed approach within the Royce iterative waterfall SDLC

For simplicity, as shown in Figure 6.2, we illustrate the application of the approach
within the Royce iterative waterfall SDLC [118]. The activities defined in Section 6.3
come as a supplement to the existing phase as follows: (1) The requirements specification
is extended with the “Formalize the (New) Security Objectives” and “Develop (New) Se-
curity Policies” activities. These activities concern the modeling framework development
process and should only be done if a new security objective or policy is needed to be
added in the framework, i.e., if a needed objective or policy is not already defined in the
framework libraries. (2) The architecture design is extended with the “Model Software
Architecture” and “Analyse Security Objectives” activities. The goal of these activities
is to ensure that the software architecture model satisfies the desired properties for the
designed system. (3) Finally, if we determine that the system design does not satisfy the
desired properties, we take action to revisit the requirements of the system, suggesting
new security policies in the “Incorporate Security Policies” activity to satisfy the desired
security objectives. In this way, we can iterate over the requirements specification and
architecture design phases of the SDLC to revise and improve the architecture design of
the system and fulfill the security objectives. As a result, the proposed approach enables

116

6.5. PROPERTY VIEW

the generation of formal artifacts early enough in the lifecycle to apply useful analysis
within the design loop, thereby supporting the principles of security-by design.

6.5 Property view

Given the component-port-connector architectural model, we explore the formalization
of representative security objectives based on the CIAA classification that target the
communication links and components in such architectures.

We use the property meta-model presented in the beginning of Section 5.5 to describe
the security objectives and policies as categories to build property model libraries for
reuse, as visualized in Figure 6.3. For instance, Confidentiality and Integrity are defined
as categories within the CIAA library. In addition, we define satisfy as a link between
properties to capture relationships between objectives and policies.

Figure 6.3: Property meta-model with satisfy relationships

In the following section, we present the precise definition of a set of security objectives
using first-order logic and modal logic as a formalism that is abstract and technology
independent in order to provide a more generic and understandable approach with map-
ping support to different existing properties languages used in modeling and software
development.

6.5.1 Logical specification

We use the logical specification domains introduced to study threats (see Section 5.6.1).

117

CHAPTER 6. SECURITY OBJECTIVES

6.5.2 CIAA security objectives

In each of the following paragraphs, we specify a representative property for each CIAA
category.

Confidentiality. According to the ISO/IEC 27000:2018 standard [56], confidentiality
denotes the property that information is not made available or disclosed to unauthorized
individuals, entities, or processes. In the context of message passing communications
within software architectures, confidentiality allows that the transmitted message can be
obtained by other components (i.e., components can receive it) but only allowed compo-
nents can get the actual content of the payload. In other words, if a component c3 other
than c1 and c2 is able to get the payload d of a message m, then c1 didn’t send the message
m with c2 as intended receiver before that. For components c1, c2 ∈ C, we denote this rep-
resentative property as PayloadConfidentiality(c1, c2) which is specified for all messages
m ∈M, for all payloads d ∈ D and all components c3 ∈ C such that c3 ̸= c1 ̸= c2 as:

Ec3(get pld(m, d))⇒ ¬(Hc1(inject(m) ∧ has rcv(m, c2)) < Ec3(get pld(m, d)) (6.1)

Example of Confidentiality instantiation. In the context of the college library website
example, the Payload Confidentiality objective must be satisfied, for example, when the
web server makes a request using a message m to the database, then only the database
should be able to get the payload of this request. Therefore, the validity of the property
PayloadConfidentiality(Webserver , Database, m) would show that the Payload Confiden-
tiality objective is fulfilled in the system.

Integrity. According to the ISO/IEC 27000:2018 standard [56], integrity refers to the
accuracy and completeness of the information. In the context of message passing com-
munications within software architectures, integrity means that no message payload can
be altered. Therefore, an integrity property can be identified by verifying whether the
system ensures that every received message is authentic, i.e., every message intercepted by
an authorized receiver provides the accurate payload to this receiver. In other words, for
any message m and payload d, if a component c2 is able to get the payload d of message m

and m was sent by c1, then d must be the original payload of m. For components s, r ∈ C,
we denote this representative property as PayloadIntegrity(c1, c2) which is specified for all

118

6.5. PROPERTY VIEW

messages m ∈M and for all payloads d ∈ D as:

Hc1(inject(m)) < Ec2(get pld(m, d))⇒ Hc1(set pld(m, d)) < Hc1(inject(m)) (6.2)

Example of Integrity instantiation.
In the context of the college library website example, the Payload Integrity objective

must be satisfied, for example, when the web server makes a request using a message
m to the database, then this request should be accurate. As a result, the validity of the
property PayloadIntegrity(Webserver , Database, m) would show that the Payload Integrity
objective is fulfilled in the system.

Availability. According to the ISO/IEC 27000:2018 standard [56], availability denotes
the property of a system function of being accessible and usable on demand by an autho-
rized entity. In the context of message passing communications within software architec-
tures, every sent message is received by the intended receiver. Therefore, an availability
property can be identified by verifying whether the system ensures that all messages are
not destroyed or deleted in transit, and they are eventually received by the intended re-
ceiver. In other words, for any message m, if a component c1 injects the message m with
c2 as the intended receiver, then finally c2 will be able to intercept m. For components
s, r ∈ C, we denote this representative property as MessageAvailability(c1, c2) which is
specified for all messages m ∈M as:

Hc2(inject(m)) ∧ has rcv(m, c2) ⇝ Ec2(intercept(m)) (6.3)

Example of Availability instantiation. Coming back to our motivating college library
website example, the Message Availability objective must be satisfied, for example, when
the web server makes a request using a message m to the database, then this request should
be always reach the database. Consequently, the validity of the property MessageAvailability
(Webserver , Database, m) would show that the Payload Authenticity objective is fulfilled
in the system.

Authenticity. According to the ISO/IEC 27000:2018 standard [56], authenticity de-
notes the property that an entity is what it claims to be. In the context of message
passing communications within software architectures, a receiver of a message is able to
identify the true sender of the corresponding payload of this message. Therefore, an au-
thenticity property can be identified by verifying whether the system ensures that all of
the senders of message are authentic, i.e., the sender of a message is always the originator

119

CHAPTER 6. SECURITY OBJECTIVES

of the message. In other words, for any message m, if a component c2 is able to get source
c1 of a message m, then c2 is the accurate sender of m. For components s, r ∈ C, we
denote this representative property as MessageAuthenticity(s, r, m) which is specified for
all messages m ∈M as:

Hc1(inject(m)) < Ec2(get src(m, c1)) (6.4)

Example of Authenticity instantiation. With respect to our motivating college library
website example, the Message Authenticity objective must be satisfied, for example, when
the database receives request using a message m from the web server, then the database
should be sure it is in fact the web server that sent this request. Therefore, the validity of
the property MessageAuthenticity(Webserver , Database, m) would show that the Payload
Authenticity objective is fulfilled in the system.

At this level of specification, we are able to specify the CIAA set of security objectives as
properties of the system architecture model, using first-order and modal logic as an abstract
and technology-independent formalism that can be interpreted in appropriate formal tooled
languages.

6.6 Formal specification and analysis in Alloy

In this section, we provide the specification and verification of a representative security
objective for each CIAA security objective category using Alloy. By operating as a coun-
terexample generator, when the Alloy Analyzer identifies the violation of a property, it
indicates the non-fulfillment of the objective. In much the same way, by operating as a
model checker, the Alloy Analyzer enables the use of a property as a policy to indicate the
fulfillment of the security objective. This enables us to construct models incrementally,
allowing rapid iterations between modeling and analysis when writing a specification. For
more formal definitions and examples on Alloy, the reader is referred to Section 2.6.2.

6.6.1 Formalizing the positive perspective of the property meta-
model

The encoding in Alloy of the logical specification of the security objectives follows the one
used for threats (see Section 5.6.1). As we shall see, security objectives and policies will
be encoded as properties (see Listing 6.1).

120

6.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

6.6.2 CIAA security objectives

We aim to build a set of reusable libraries for security objectives verification and treatment.
To do so, we model the objective categories presented in Section 6.5 in Alloy, using
constructions such as Predicate, Assertion, and Fact. Remember that during the logical
specification, each security objective category is associated with a representative property
such that the violation of the specified property indicates the not satisfaction of the
objective. Therefore, each security objective is associated with a security property defined
as a predicate to map the logical definition of the corresponding security property to
the Alloy model describing the targeted software architecture and communication system
(e.g., confidentialityNotHold). Then, the violation of a security objective, as a result of the
violation of the property, is detected by the Alloy Analyzer through an assertion finding
a counterexample. As a result, an appropriate security policy is defined as a predicate
(e.g., restrictiveGetPld) to codify a security mechanism to constrain the operation of the
system and to guarantee the satisfaction of corresponding security objectives.

Confidentiality. The PayloadConfidentiality property is considered within the connec-
tor and can be identified by checking whether the communication system provided by the
connector ensures that all information transmitted through this connector is delivered
only to the intended receiver(s). The PayloadConfidentiality property is defined in this
respect as a predicate according to the logical specification of the PayloadConfidentiality
(see Equation (6.5.2)) and the system computing model.

1 sig PayloadConfidentiality extends ConnectorProperty {}{
2 payloadConfidentiality [comp1 ,comp2 ,payl]
3 }
4 pred payloadConfidentiality [c1 ,c2:Component , d: Payload] {
5 all c3: Component-c1-c2 | let m = {m: MsgPassing | m. payload = d } |
6 all t:Tick | E_get_pld [c3 ,m,d,t] implies
7 (no t2: Tick-tick /first | no t1:t2.prevs | (H_inject [c1 ,m,t1] and m.

receiver = c2)
8 implies E_get_pld [c3 ,m,d,t2])
9 }

10 assert confidentialityNotHold {
11 all c1 ,c2: Component , m: MsgPassing | payloadConfidentiality [c1 ,c2 ,m]
12 }

Listing 6.1: Confidentiality property

121

CHAPTER 6. SECURITY OBJECTIVES

Figure 6.4: Confidentiality counterexample provided by the Alloy Analyzer

The Alloy Analyzer detects the violation of the confidentiality property by finding a
counterexample executing the confidentialityNotHold assertion (see Figure 6.4). Then, we
proceed by defining the security policy named restrictiveGetPld that constrains the inject
and get pld operations using the AllowedGetPld. It is as an abstract security mechanism
to satisfy the confidentiality property by identifying the set of components that are able
to get the payload. To evaluate the impact on using the defined policy, we introduce
the RestrictiveGetPld property as a predicate on the connector level that ensures that all
messages going through it respects this policy. It guarantees that no component other
than the intended receiver(s) is able to get the payload of a message sent through this
connector.

1 sig AllowedGetPld {
2 msg: one MsgPassing ,
3 comp: set Component
4 }

122

6.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

5 pred restrictiveGetPld [m: MsgPassing] {
6 all c:Component , t:Tick |
7 E_inject [c,m,t] implies some al: AllowedGetPld |
8 al.msg = m and al.comp = m. receiver
9 all c:Component , t:Tick , d: Payload |

10 E_get_pld [c,m,d, t] implies some al: AllowedGetPld |
11 al.msg = m and c in al.comp
12 }
13 pred ConnectorMPS . RestrictiveGetPld {
14 all m:MsgPassing , t:Tick |
15 m in this. buffer .t implies restrictiveGetPld [m]
16 }
17 assert confidentialityHold {
18 (all c: ConnectorMPS | c. RestrictiveGetPld) implies
19 all c1 ,c2:Component , d: Payload | payloadConfidentiality [c1 ,c2 ,d]
20 }

Listing 6.2: Confidentiality policy

Integrity. The PayloadIntegrity property is considered within the connector and can
be identified by checking whether the communication system provided by the connector
ensures that all messages transmitted through this connector are not altered in transit.
The PayloadIntegrity property is defined in this respect as a predicate according to the
logical specification of the PayloadIntegrity property (see Equation (6.5.2)) and the system
computing model.

1 sig PayloadIntegrity extends ConnectorProperty {}{
2 payloadIntegrity [comp1 ,comp2 ,payl]
3 }
4 pred payloadIntegrity [c1 ,c2:Component , d: Payload] {
5 let m = {m: MsgPassing | m. payload = d } |
6 all t2: Tick-tick /first | some t1:t2.prevs |
7 (H_inject [c1 ,m,t1] implies E_get_pld [c2 ,m,d,t2]))
8 implies (all t2: Tick-tick /first | some t1:t2.prevs |
9 (set_pld [c1 ,m,d,t2] implies H_inject [c1 ,m,t1]))

10 }
11 assert integrityNotHold {
12 all c1 ,c2: Component , d: Payload | payloadIntegrity [c1 , c2 , d] }

Listing 6.3: Integrity property

The Alloy Analyzer detects the violation of the integrity property by finding a coun-
terexample. Then, we proceed by defining the security policy named restrictiveSetPld that

123

CHAPTER 6. SECURITY OBJECTIVES

constrains the inject and set pld operations using the AllowedSetPld. It is an abstract
security mechanism to satisfy the integrity property by defining the set of components
who are able to write/modify the payload. The RestrictiveSetPld property is defined as
a predicate on the connector that ensures that all messages going through it respects this
policy. It guarantees that the payload that was sent by a sender is the same payload that
was received by the receiver through this connector.

1 sig AllowedSetPld {
2 msg: one MsgPassing ,
3 comp: one Component
4 }
5 pred restrictiveSetPld [m: MsgPassing] {
6 all c:Component , t:Tick , d: Payload |
7 E_set_pld [c,m,d, t] implies some al: AllowedSetPld |
8 al.msg = m and al.comp = c
9 all c:Component , t:Tick |

10 E_inject [c,m,t] implies some al: AllowedSetPld |
11 al.msg = m and al.comp = c
12 }
13 pred ConnectorMPS . RestrictiveSetPld {
14 all m:MsgPassing , t:Tick |
15 m in this. buffer .t implies restrictiveSetPld [m]
16 }
17 assert integrityHold {
18 (all c: Connector | c. RestrictiveSetPld) implies
19 all c1 ,c2: Component , d: Payload | payloadIntegrity [c1 ,c2 ,d]
20 }

Listing 6.4: Integrity policy

Availability. The MessageAvailability property is considered within the connector and
can be identified by checking whether the communication system provided by the connec-
tor ensures that all information transmitted through this connector is not lost until the
intended receiver(s) intercepts the message. The MessageAvailability property is defined
in this respect as a predicate according to the logical specification of the MessageAvail-
ability (see Equation (6.5.2)) and the system computing model.

1 sig MessageAvailability extends ConnectorProperty {}{
2 messageAvailability [comp1 ,comp2 ,payl]
3 }
4 pred messageAvailability [c1 ,c2:Component , d: Payload] {
5 let m = {m: MsgPassing | m. payload = d } |

124

6.6. FORMAL SPECIFICATION AND ANALYSIS IN ALLOY

6 all t1:Tick | some t2:t1. nexts |
7 H_inject [c1 ,m,t1] and m. receiver = c2 implies E_intercept [c2 ,m,t2]
8 }
9 assert availabilityNotHold {

10 all c1 ,c2: Component , d: Payload | messageAvailability [c1 ,c2 , d]
11 }

Listing 6.5: Availability property

The Alloy Analyzer detects the violation of the Availability property by finding a
counterexample.Then, we proceed by defining the security policy named lossFreeInject
that constrains the operations on the buffer using the AllowedIntercept. It is an abstract
security mechanism to satisfy this property by keeping every injected message in the
buffer until an appropriate intercept operation is executed. The LossFreeInject property
is defined as a predicate on the connector that ensures that all messages going through it
respects this policy. It guarantees that no message is lost until the intended receiver(s) is
able to intercept the message.

1 sig AllowedIntercept {
2 msg: one MsgPassing ,
3 comp: set Component
4 }
5 pred lossFreeInject [m: MsgPassing] {
6 all c1:Component , t1:Tick | let c2=m. receiver |
7 inject [c1 ,m,t1] implies
8 some al: AllowedIntercept , con: Connector | all t2:t1.nexts |
9 m not in con. buffer .t2 iff al.msg = m and al.comp = c2

10 and H_intercept [c2 ,m,t2]
11 }
12 pred ConnectorMPS . LossFreeInject {
13 all m:MsgPassing , t:Tick |
14 m in this. buffer .t implies lossFreeInject [m]
15 }
16 assert availabilityHold {
17 (all c: Connector | c. LossFreeInject) implies
18 all c1 ,c2: Component , d: Payload | messageAvailability [c1 ,c2 ,d]
19 }

Listing 6.6: Availability policy

Authenticity. The MessageAuthenticity property is considered within the connector
and can be identified by checking whether the communication system provided by the

125

CHAPTER 6. SECURITY OBJECTIVES

connector ensures that all messages transmitted through this connector have authentic
senders. The MessageAuthenticity property is defined in this respect as a predicate ac-
cording to the logical specification of the MessageAuthenticity property (see Equation
(6.5.2)) and the system computing model.

1 sig MessageAuthenticity extends ConnectorProperty {}{
2 messageAuthenticity [comp1 ,comp2 ,payl]
3 }
4 pred messageAuthenticity [c1 ,c2:Component , d: Payload] {
5 let m = {m: MsgPassing | m. payload = d } |
6 all t2: Tick-tick /first | some t1:t2.prevs |
7 E_get_src [c2 ,m,c1 ,t2] implies H_inject [c1 ,m,t1]
8 }
9 assert authencityNotHold {

10 all c1 ,c2: Component , d: Payload | messageAuthenticity [c1 ,c2 ,d]
11 }

Listing 6.7: Authenticity property

The Alloy Analyzer detects the violation of the authenticity property by finding a
counterexample.Then, we proceed by defining the security policy named restrictiveSet-
Src that constrains the inject and set src operations using the AllowedSetSrc. It is an
abstract security mechanism to satisfy the authenticity property by defining the set of
components who are able to set up the payload. The RestrictiveSetSrc property is defined
as a predicate on the connector that ensures that all messages going through it respects
this policy. It guarantees that no component can pretend to send a message as some other
component.

1 sig AllowedSetSrc {
2 msg: one MsgPassing ,
3 comp: one Component
4 }
5 pred restrictiveSetSrc [m: MsgPassing] {
6 all c,s:Component , t:Tick |
7 E_set_src [c,m,s,t] implies some al: AllowedSetSrc |
8 al.msg = m and al.comp = s
9 all c:Component , t:Tick |

10 E_inject [c,m,t] implies some al: AllowedSetSrc |
11 al.msg = m and al.comp = c
12 }
13 pred ConnectorMPS . RestrictiveSetSrc {
14 all m:MsgPassing , t:Tick |
15 m in this. buffer .t implies restrictiveSetSrc [m] }

126

6.7. FORMAL SPECIFICATION AND ANALYSIS IN COQ

16 assert authencityHold {
17 (all c: Connector | c. RestrictiveSetSrc) implies
18 all c1 ,c2: Component , d: Payload | messageAuthenticity [c1 ,c2 ,d]
19 }

Listing 6.8: Authenticity policy

At this level of specification, we are able to: (1) formally represent an interpretation of
the CIAA set of objectives described in Section 5.5.2 and develop a set of policies to treat
them as properties of the architecture model in Alloy, (2) provide the properties as formal
model libraries to support reuse, and (3) offer methods and functions to easily verify that
the properties hold in a given architecture model fostering reuse.

6.7 Formal specification and analysis in Coq

Our goal is to use Coq as a proof assistant (1) to specify the security objectives as an
interpretation of the logical definition of the system architecture (see Section 5.5.1), the
security objectives and policies as properties (see Section 6.6); (2) the formulation of
theorems stating relations between properties; and (3) to support proving these relations
semi-automatically using the proof assistant.

In this section, we provide the specification and verification of a representative security
objective for the confidentiality category using Coq. By operating as a proof assistant,
when the Coq IDE checks the validity of a property as a policy to indicate the fulfillment
of the security objective. For more formal definitions and examples on Coq, the reader is
referred to Section 2.6.2 and Appendix B.1.

6.7.1 Formalizing the software component meta-model and prop-
erties meta-model

A software architecture metamodel as described in Section 4.5 and the set of actions
described in Section 5.5.1 are mapped to our Coq metamodel as follows.

• Component C , Message M, Payload D are defined as Type.

• The set of actions A are expressed as inductive types, where each action act(param1 ,

. . . , paramn) ∈ A is transformed in constructor act : param 1 → ... → param n →
Action. For example, inject(m) is transformed to inject : Message → Action indicat-
ing that a sender adds a message m ∈M into the system.

127

CHAPTER 6. SECURITY OBJECTIVES

• Σ is the set of actions in A performed by the components in C.

• The system’s behavior can then be formally described by B, where B ⊆ Σ∗

Listing 6.9 depicts the interpretation of these concepts in Coq.
1 Parameter Component: Type.
2 Parameter Message: Type.
3 Parameter Payload : Type.
4 Parameter Pld: Message → Payload.
5 Parameter Src: Message → Component.
6 Parameter Rcv: Message → Component.
7
8 Inductive Action: Type :=
9 inject : Message → Action

10 | intercept : Message → Action
11 | get rcv: Message → Component → Action
12 | get src : Message → Component → Action
13 | get pld: Message → Payload → Action
14 | set rcv : Message → Component → Action
15 | set src : Message → Component → Action
16 | set pld : Message → Payload → Action.
17
18 Inductive CompoundAction : Type :=
19 BasicAction (c:Component) (a : Action)
20 | Any
21 | UnionAction (a1 a2 : CompoundAction)
22 | SequenceAction (a1 a2 : CompoundAction)
23 | RepeatAction (a: CompoundAction)
24 | SkipAction.
25
26 Definition Behavior := nat → (Component ∗ Action).
27 Notation ”c ’does’ a” := (BasicAction c a) (at level 23, no associativity).

Listing 6.9: Coq metamodel

Then, we define the atom and formula as inductive Type. The base logic connector
(atomic formula, false, implies, until) are also defined. Listing 6.10 depicts the corre-
sponding definitions and used notations.

1 Inductive Atom :=
2 | has src (m: Message) (c: Component)
3 | has rcv (m: Message) (c: Component)
4 | has pld (m: Message) (d: Payload)
5 | E (ag: Component) (a: Action).

128

6.7. FORMAL SPECIFICATION AND ANALYSIS IN COQ

6 Inductive Formula :=
7 | AtomicFormula (a:Atom)
8 | Is⊥
9 | Implies (f1: Formula) (f2: Formula)

10 | Until (f1: Formula) (A: CompoundAction) (f2: Formula).
11 Coercion AtomicFormula: Atom >→ Formula.

Listing 6.10: Coq atom & formula specification

Next, we specify the logical connectives and modal operators presented in Section 6.5
on top of the already defined formulas. Listing 6.11 depicts some examples of the defini-
tions and notations in Coq.

1 Definition Not p := Implies p Is⊥.
2 Definition Is⊤ := Not Is⊥.
3 ...
4 Definition Leadsto f1 A f2 := Globally Any (Implies f1 (Eventually A f2)).
5 Definition AllA (ca: CompoundAction) (a: Formula) := Leadsto Is⊤ ca a.
6 ...
7 Definition H ag a := ExA (ag does a) Is⊤.
8 Definition Precede p q := Not (Until (Not p) Any q).
9 ...

10 Notation ”p ⇒ q” := (Implies p q) (at level 14, right associativity).
11 Notation ”p −→ q” := (Leadsto p Any q) (at level 49, right associativity).
12 Notation ”p << q” := (Precede p q) (at level 15, no associativity).
13 ...
14 Notation ”! p” := (Not p) (at level 9, right associativity).

Listing 6.11: Interpretation of logical connectives and modal operators in Coq

Then, we specify notations B ⊢ f that express the satisfaction of a formula f for a
behavior B (See Listing 6.12).

1 Parameter asat: (Component ∗ Action) → Atom → Prop.
2 Parameter compat: Behavior → nat → CompoundAction → Prop.
3 Fixpoint sat B f : Prop :=
4 match f with
5 AtomicFormula a → asat (B 0) a
6 | Is⊥ → ⊥
7 | Implies f1 f2 → (sat B f1) → (sat B f2)
8 | Until f1 A f2 → ∃ t,
9 sat (fun i → B (t+i)) f2 ∧

10 (∀ t’, t’ < t → sat (fun i → B (t’+i)) f1) ∧
11 compat B t A
12 end.

129

CHAPTER 6. SECURITY OBJECTIVES

13
14 Notation ”B ⊢f” := (sat B f) (at level 50, no associativity).

Listing 6.12: Coq behavior satisfaction

We encode the axioms described in Section 5.5.1 and specify lemmas for the previous
defined operator of our logic (logical connectives, modal operators) to build logical rea-
soning. For example, we define Lemma satImpl elim that shows if a behavior B satisfies
p implies q, then B satisfies p and B satisfies q (see Listing 6.13).

1 Axiom axiomHImpE : ∀ B c1 p, B ⊢(H c1 p) ⇒ (E c1 p).
2 ...
3 Lemma satImpl elim: ∀ B p q, (B ⊢p ⇒ q) → ((B ⊢p) → (B ⊢q)).
4 Proof.
5 intros.
6 apply H0.
7 apply H1.
8 Qed.
9 ...

Listing 6.13: Coq Axioms & Lemmas

Security objectives can now be defined in terms of a system specification, i.e., in terms
of actions, messages, components, etc.

6.7.2 Confidentiality in Coq

As already mentioned in Section 6.6.2, an example of a relation between properties is that
restrictiveGetPld [m:MsgPassing] under certain assumptions implies PayloadConfidentiality
[c1,c2:Component, d:Payload]. In this section we use the formal definitions provided in Sec-
tion 6.6 to formally prove that under the assumption that the policy is an abstract security
mechanism identifying components who are able to get the payload, restrictiveGetPld (p:
AllowedGetPld) m implies PayloadConfidentiality B c1 c2. This is our first example of using
Coq in the context of security-by design but serves to show how we use Coq in our work.

Confidentiality of the content of the payload. PayloadConfidentiality property
for component c1 and c2 is defined in this respect as a predicate according to the logical
specification of the PayloadConfidentiality (Equation 6.1) and the system computing
model as introduced in the beginning of this section.

130

6.7. FORMAL SPECIFICATION AND ANALYSIS IN COQ

1 Definition PayloadConfidentiality B c1 c2 :=
2 ∀ c3 m d, not (In c3 [c1; c2]) → (B ⊢Eventually Any (E c3 (get pld m d))) →
3 not (B ⊢ (H c1 (inject m) && has rcv m c2) << (E c3 (get pld m d))).

Listing 6.14: Coq PayloadConfidentiality property definition

Security policy. restrictiveGetP ld property constrains the inject and get pld opera-
tions using AllowedGetP ld. It is as an abstract security mechanism to satisfy the confi-
dentiality property by identifying components who are able to get the payload.

1 Record AllowedGetPld : Type := {
2 msg: Message ;
3 comp : Component;
4 }.
5
6 Definition restrictiveGetPld (p:AllowedGetPld) m B :=
7 (∀ c, (B ⊢Eventually Any (E c (inject m)) → (msg p = m ∧ Rcv m = comp p)))
8 ∧
9 (∀ c d, (B ⊢Eventually Any (E c (get pld m d))) → (msg p = m ∧ c = comp p)).

10
11 Definition connectorRestritiveGetPld p B :=
12 ∀ c m, (B ⊢Eventually Any (E c (intercept m))) → restrictiveGetPld p m B.

Listing 6.15: Coq restrictiveGetPld policy definition

We can now proceed with the proof.

Proof goal. We want to prove that if the connector con between c1 and c2 enforces the
allowedGetP ld policy (hypothesis connectorRestritiveGetP ld), then the confidentiality
objective (PayloadConfidentiality) between c1 and c2 holds, i.e., no c3 component is
able to get the payload of a message m send by c1 to c2 through connector con.

Proof overview. In order to show this, we use proof by contradiction. We assume
that connectorRestritiveGetP ld (the policy is deployed) and B ⊢ (H c1 (inject m)&&
has rcv m c2)<< E c3 (get pld m d) (the negation of the final implication of our proof goal
PayloadConfidentiality) and we derive a contradiction. The proof consists of the fol-
lowing steps:

Step 1. We define the initial hypotheses for all B behavior; c1, c2, c3 components; p

allowedGetP ld policy; m a message and d a payload. Unfolding the definitions and spe-

131

CHAPTER 6. SECURITY OBJECTIVES

cializing some of them, we obtain the following. The corresponding Coq code is depicted
in Listing 6.16.

1. connector restritive get pld (specialize for c3 and m):

B ⊢Eventually Any (E c3 (intercept m))→

(∀ c : Component, B ⊢Eventually Any (E c (inject m))

→ msg p = m ∧ Rcv m = comp p)∧

(∀ (c : Component)(d : Data), B ⊢Eventually Any (E c (get pld m d))

→ msg p = m ∧ c = comp p)

2. c3 not in c1 c2 (from PayloadConfidentiality) :

¬ In c3 [c1; c2]

3. c3 eventually enable to get d (from PayloadConfidentiality) :

B ⊢Eventually Any (E c3 (get pld m d))

4. c1 injected m to c2 (negation of the final implication of PayloadConfidentiality

(proof by contradiction)) :

B ⊢ (H c1 (inject m)&& has rcv m c2)<< E c3 (get pld m d)

1 Theorem confidentialityHold:
2 ∀ B c1 c2 p, connectorRestritiveGetPld p B → PayloadConfidentiality B c1 c2.
3 Proof.
4 intros B c1 c2 p connector restritive get pld .
5 unfold PayloadConfidentiality, connectorRestritiveGetPld, restrictiveGetPld in ∗.
6 intros c3 m d c3 not in c1 c2 c3 eventually enable to get d c1 injected m to c2.
7 specialize (connector restritive get pld c3 m).

Listing 6.16: Coq confidentiality proof step 1

Step 2. In this step, we show that, as we know, the behavior B entails that even-
tually c3 is able to get the payload d of message m, then it means that a behavior B

132

6.7. FORMAL SPECIFICATION AND ANALYSIS IN COQ

entails that eventually c3 intercepted this message before. Starting from the hypothesis
c3 eventually enable to get d :

B ⊢Eventually Any (E c3 (get pld m d))

We deduce c3 eventually intercept m :

B ⊢Eventually Any (H c3 (intercept m))

Therefore, we show that the behavior B satisfies that eventually c3 intercepted this
message.

Step 3. We show that as the behavior B satisfies eventually c3 intercepted the message
m, then it means that the behavior B satisfies eventually c3 was also able to intercept
this message. Starting from the newly obtained hypothesis c3 eventually intercept m :

B ⊢Eventually Any (H c3 (intercept m))

We obtain the new hypothesis c3 eventually e intercept m :

B ⊢Eventually Any (E c3 (intercept m))

Step 4. We apply the hypothesis from the Step 1 connector restritive get pld in the
new hypothesis c3 eventually e intercept m obtained in the previous step in order to
simplify it. From this we then deduce restritive get pld.

(∀ c : Component,

B ⊢Eventually Any (E c (inject m))

→ msg p = m ∧ Rcv m = comp p)

∧

(∀ (c : Component)(d : Data),

B ⊢Eventually Any (E c (get pld m d))

→ msg p = m ∧ c = comp p)

Step 5. In this step, we simplify again the hypothesis restritive get pld and show that
c3 and m must be the same, respectively, as the component, denoted by comp p, and the
message, denoted by msg p, of the policy p. The obtained terms are then substituted in

133

CHAPTER 6. SECURITY OBJECTIVES

the rest of the hypotheses.

(∀ c : Component,

B ⊢Eventually Any (E c (inject m))→ msg p = m ∧ Rcv m = comp p)

∧

(∀ (c : Component)(d : Data),

B ⊢Eventually Any (E c (get pld m d))→ msg p = m ∧ c = comp p)

We obtain the following two terms by simplification :

• msg p = m

• c3 = comp p

We substitute these terms in our hypothesis. From this we then deduce the following
updated hypothesis:

• c3 not in c1 c2 (from Step 1) :

¬ In (comp p)[c1; c2]

• c3 eventually intercept m (from Step 2) :

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

• c1 injected m to c2 (from Step 1):

B ⊢ (H c1 (inject (msg p)) && has rcv (msg p)c2) <<

E (comp p)(get pld (msg p) d)

• eventually e inj m impl valid policy (from current Step) :

B ⊢Eventually Any (E c1 (inject (msg p)))→

msg p = msg p ∧ Rcv (msg p)= comp p

Step 6. We show that, since the behavior B satisfies that eventually the compo-
nent denoted by comp p of the policy p is able to get the payload d from the message

134

6.7. FORMAL SPECIFICATION AND ANALYSIS IN COQ

denoted by msg p of the policy p, the behavior B satisfies that eventually the compo-
nent comp p is the one that intercepts the message msg p. Starting from hypothesis
c3 eventually enable to get d:

B ⊢Eventually Any (E (comp p)(get pld (msg p)d))

We get eventually h comp p intercept msg p :

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

Step 7. In this step, we show that since the behavior B satisfies that eventually the
component comp p is the one that intercepts the message msg p, then the behavior B

satisfies that eventually the component c1 injected the message msg p. Starting from
hypothesis eventually h comp p intercept msg p:

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

We obtain ev c1 inject msgP :

B ⊢Eventually Any (H c1 (inject (msg p))

Step 8. We show that since the behavior B satisfies that eventually c1 injected the
message msg p, the behavior B also satisfies that eventually c1 was able to inject msg p.
Starting from ev c1 inject msgP :

B ⊢Eventually Any (H c1 (inject (msg p)))

We show that we have E c1 inject msgP :

B ⊢Eventually Any (E c1 (inject (msg p)))

Step 9. In this step, we show that through some simplifications from the previous hy-
potheses, the component comp p declared in the policy p must be the receiver Rcv (msg p)
of the message msg p declared in the policy p. Then, we rewrite the corresponding terms
in all our hypotheses. Starting from hypothesis eventually e inj m impl valid policy :

B ⊢Eventually Any (E c1 (inject (msg p)))→ msg p = msg p ∧ Rcv (msg p)= comp p

135

CHAPTER 6. SECURITY OBJECTIVES

We obtain by simplification policyRight :

Rcv (msg p)= comp p

We rewrite terms using policyRight in our hypotheses. From this, we obtain the
following updated hypotheses:

• c3 not in c1 c2 (from Step 5):

¬ In (Rcv (msg p))[c1; c2]

• c3 eventually enable to get d (from Step 5):

B ⊢Eventually Any (E (Rcv (msg p))(get pld (msg p)d))

• c1 injected m to c2 (from Step 5) :

B ⊢ (H c1 (inject (msg p)) && has rcv (msg p)c2)

<< E (Rcv (msg p))(get pld (msg p)d)

• eventually h comp p intercept msg p (from Step 6) :

B ⊢Eventually Any (H (Rcv (msg p))(intercept (msg p)))

Step 10. In this step, we show that c2 must also be the receiver Rcv (msg p) of the
message msg p of the policy p, which in turn contradicts the previous result and conclude
the proof. Starting from hypothesis c1 injected m to c2 :

B ⊢ (H c1 (inject (msg p)) && has rcv (msg p)c2) << E (Rcv (msg p))(get pld (msg p)d)

We obtain ev hasRcv msg2 c2:

c2 = Rcv (msg p)

We substitute these terms in our hypotheses. From this, we deduce the following updated
hypothesis:

136

6.8. TOOL SUPPORT

• c3 not in c1 c2 (from Step 9) :

¬ In (Rcv (msg p))[c1; Rcv (msg p)]

Hypothesis c3 not in c1 c2 shows a contradiction, hence, as Coq IDE shows, the proof
is complete. Q.E.D.

At this level of specification, we are able to: (1) formally represent an interpretation of
the confidentiality security objective described in Section 5.5.2 and develop an appropriate
policy as properties of the architecture model in Coq, (2) provide the properties as formal
model libraries to support reuse, and (3) offer methods and functions to easily check the
validity of a property as a policy to indicate the fulfillment of the security objective in a
given architecture model, fostering reuse.

6.8 Tool Support

We have implemented two prototypes to support the proposed approach (Section 6.3) as
an Eclipse plug-in. The first prototype uses Alloy and the second uses Coq as the support
tool for analysis. As presented in 2.6.2, each tool offers its advantages and disadvantages.
Alloy offers a better automation, therefore, as we will see in what follows, better reuse and
generation support for our approach (e.g., report generation) but verification is bound to
scope. Whereas, Coq offers proof for verification, as a consequence, the verification is not
limited to a scope, but allows less automation. Consequently, it impacts the reuse and
automation support part of our approach and requires more skills (e.g., proof analysis)
for the designer.

In both cases, our starting point is the software architecture metamodel presented
in Section 6.5 as the metamodel for a software architecture DSL. The metamodel de-
scribes the abstract syntax of the DSL, by capturing the concepts of the component-port-
connector software architecture domain and how the concepts are related.

6.8.1 Automated formal tool : Alloy

The architecture of the tool using Alloy as the formal tool, as shown in Figure 6.5, is com-
posed of two main blocks: (1) Modeling framework block and (2) Application development
block. Each block is composed of a set of modules to support the corresponding set of
activities (the numbers in parentheses correspond to the activity numbers in Figure 6.5).

137

CHAPTER 6. SECURITY OBJECTIVES

A1.1. Edit (Ecore DSL metamodel)

A2.1. Edit DSL model (xtext)

Conforms to

Alloy formal metamodel

Formal model (Alloy)

A1.2. Translate
(component-port-connector
metamodel)

Conforms to

A2.4. Analyse and
generate (Alloy
solution model /
Counter-example)

A2.5. Generate
(Objectives report)

A2.3. Generate (Alloy model, objectives
and policies)

A2.8. Generate
(Policies report)

A1.3. Define
reusable formal
model libraries
(objectives,
policies)A1.4. Translate

(objectives, policies
formal models)

A2.7. Integrate
policy
library

A2.2.
Integrate
objective
library

 A2.6. Find issues

M
odeling fram

ew
ork

block
A

pplication
developm

ent block

Partial Automation

Automation

Future Automation

Figure 6.5: Tool support for security objectives using Alloy architecture and artifacts of
the approach

6.8.1.1 Modeling framework block

The first block is dedicated to supporting four activities. Activity A1.1 is responsible
for creating the DSL metamodel. The resulting metamodel is used to formally define
(in Alloy) the static and behavioral semantics, based upon the DSL metamodel ac-
cording to the procedure discussed in Section 6.6. We will name this definition the
formal metamodel (A1.2). Furthermore, reusable objective model libraries and pol-
icy model libraries are also defined as Alloy models according to the procedure dis-
cussed in Section 6.6.2 (A1.3). We will name this definition the formal model libraries.
The last activity (A1.4) is the definition of a set of DSL model libraries from the Al-
loy specification of objectives and policies (formal model libraries), using the property
view of the DSL metamodel (Figure 6.3). Each objective property is associated with
a set of policy to satisfy it, during A1.3. As an example, we use confidentiality
as an instance of PropertyCategory, payloadConfidentiality as an instance of the
ConnectorProperty within the CIAAObjective library and restrictedGetPld as an in-
stance of the ConnectorProperty within the SecurityPolicy library. Finally, we set up

138

6.8. TOOL SUPPORT

that the restrictedGetPld policy satisfy the payloadConfidentiality objective.
To support these four activities, we used EMF, Xtext to develop the DSL metamodel,

and the Alloy Analyzer to encode the corresponding formal metamodel. No further im-
plementation was required.

6.8.1.2 Application development block

The second block is dedicated to supporting eight activities. Activity A2.1 allows the
designer to model a software architecture (DSL model) conforming to the DSL metamodel,
where A2.2 allows to integrate the objectives specification reusing the already developed
objective model libraries (A1.4). Figure 6.6 shows the model for the example the college
library web application.

Then, A2.3 is the generation of a formal model (in Alloy) from a DSL model, through
a transformation engine. The Alloy Analyzer is then invoked, with several iterations, to
detect the violation or satisfaction of objective (A2.4) and the report on the violated
and satisfy objectives may be generated as an HTML document (A2.5), such as the
one visualized in Figure 6.8. The report is then analyzed (A2.6) and A2.7 allows the
designer to add the corresponding security policies to the DSL model reusing the DSL
model libraries and the satisfy relationship between properties (A1.4). The resulting DSL
model is then transformed to a formal Alloy model (A2.3), where the formal definition of
the corresponding security policy is automatically added in the produced Alloy software
architecture model from their DSL definitions. At the end, when all objectives are satisfied
(i.e., when no counterexample was found when the Alloy Analyzer is invoked), the policy
report is generated as an HTML document (A2.8), as visualized in Figure 6.9.

To support these eight activities, we developed a textual editor to model the archi-
tecture of the system using EMF and Xtext. In addition, the textual editor provides
auto-completion for the manual integration of the objective library (A2.2), proposing the
possible objective categories and properties for a software architecture elements, when the
designer is typing the elements. We also developed two transformation engines to gener-
ate the formal Alloy model (A2.3) and the HTML reports using Xtend (A2.5 and A2.8).
The transformation process takes advantage of the template feature provided by Xtend
and consists of a set of transformation rules that are applied for each concept (using tree
traversal) on a DSL model to generate an Alloy formal model. Figure 6.7 shows an ex-
ample of such rules to transform concept from our DSL Model to an Alloy formal model.
The generation process allows to automatically incorporate the formal definition of the
targeted objectives from their DSL definition in the produced Alloy software architecture

139

CHAPTER 6. SECURITY OBJECTIVES

model. Finally, the Alloy Analyzer is used to verify the resulting models and to generate
counterexamples.

Figure 6.6: Definition of the security requirements using security objectives modeling for
the college library web application

Figure 6.7: Transformations supporting the generation to Alloy for security objectives
from a DSL model using Xtend

140

6.8. TOOL SUPPORT

Figure 6.8: Objective report showing the violated and satisfied security objectives for the
college library website application

Figure 6.9: Policy report showing the policies applied to fulfill security objectives for the
college library website application

Putting all this together and using the developed tooled framework, we are able to: (1)
model security requirements from the positive vision using the CIAA security objectives at
the architecture design level using a domain-specific language, (2) generate an interpre-
tation of the resulted software architecture model and properties in Alloy, (3) verify the
satisfaction of a set of security requirements for a concrete application through reusable
model of previously specified and verified security objectives, (4) treat the detected proper-
ties violation using appropriate policy models, and (5) generate new artifacts as feedback
on the software architecture model and its security.

141

CHAPTER 6. SECURITY OBJECTIVES

6.8.2 Proof assistant : Coq

A1.1. Edit (Ecore DSL metamodel)

A2.1. Edit DSL model (xtext)

Conforms to

Coq formal metamodel

Formal model (Coq)

A1.2. Translate (metamodel)

Conforms to

A2.4. Analyse (Coq assisted proof)

A2.3. Generate (Coq model,
objectives and policies proof
skeleton)

A1.3. Define
reusable formal
model libraries
(objectives,
policies)

A2.2. Integrate
objectif library

 A2.5. Find issues

M
odeling fram

ew
ork

block
A

pplication
developm

ent block

Partial Automation

Automation

Future Automation

A2.6. Integrate
policy library

A1.4. Translate (objectives,
policies formal models)

Figure 6.10: Tool support for security objectives using Coq architecture and artifacts of
the approach

The architecture of the tool support using Coq as the formal tool, as shown in Fig-
ure 6.10, is composed of two main blocks: (1) Modeling framework block and (2) Appli-
cation development block. Each block is composed of a set of modules to support the
corresponding set of activities (the numbers in parentheses correspond to the activity
numbers in Figure 6.10).

6.8.2.1 Modeling framework block

The first block is dedicated to supporting four activities. Activity A1.1 is responsible
for creating the DSL metamodel. The resulting metamodel is used to formally define (in
Coq) the static and behavioral semantics, based upon the DSL metamodel according to
the procedure discussed in Section 6.7. We will name this definition the formal metamodel
(A1.2). Furthermore, reusable objective model libraries and policy model libraries are
also defined as Coq models according to the procedure discussed in Section 6.7.2 (A1.3).
We will name this definition the formal model libraries. The last activity (A1.4) is

142

6.8. TOOL SUPPORT

the definition of a set of DSL model libraries from the Alloy specification of objectives
and policies (formal model libraries), using the property view of the DSL metamodel
(Figure 6.3). Each objective property is associated with a set of policy to satisfy it,
during A1.3.

To support these four activities, we used EMF, Xtext to develop the DSL metamodel,
and Coq to encode the corresponding formal metamodel. No further implementation was
required.

6.8.2.2 Application development block

The second block is dedicated to supporting six activities. Activity A2.1 allows the
designer to model a software architecture (DSL model) conforming to the DSL metamodel,
where A2.2 allows to integrate the objectives specification reusing the already developed
objective model libraries (A1.4). Then, A2.3 is the generation of a formal model (in Coq)
from a DSL model, through a transformation engine. Then, the designer can use the Coq
IDE as proof assistant and complete the analyse the model and ensure the satisfaction of
the required objectives (A2.4). From the results of the analysis, the designer can deduce
the security issues (A2.5). Then in activity A2.6, the designer can add the corresponding
security policies to the DSL model reusing the DSL model libraries. The resulting DSL
model is then transformed to a formal Coq model (A2.3), where the formal definition of
the corresponding security policy is automatically added in the produced Coq software
architecture model from their DSL definitions. Finally, when all objectives are satisfied,
i.e., when the designer did and validated all the required proofs, the system is considered
secure.

To support these six activities, we developed a textual editor to model the architecture
of the system using EMF and Xtext. In addition, the textual editor provides auto-
completion for the manual integration of the objective library (A2.2), proposing the
possible objective categories and properties for a software architecture elements, when
the designer is typing the elements. We also developed two transformation engines to
generate the formal Coq model (A2.3). The transformation process takes advantage of
the template feature provided by Xtend and consists of a set of transformation rules that
are applied for each concept (using tree traversal) on a DSL model to generate a Coq
formal model. Figure 6.11 shows examples of such a rule to transform concept from our
DSL Model to a Coq formal model. The generation process allows to incorporate the
formal definition of the targeted objectives from their DSL definition in the produced
Coq software architecture model. Finally, the Coq IDE is used to complete and verify the

143

CHAPTER 6. SECURITY OBJECTIVES

resulting models using proofs.

Figure 6.11: Transformations supporting the generation to Coq for security objectives
from a DSL model using Xtend

Putting all this together and using the developed tooled framework, we are able to: (1)
model security requirements from the positive vision using the confidentiality security ob-
jective at the architecture design level using a domain-specific language, (2) generate an
interpretation of the resulted software architecture model and properties in Coq, (3) verify
the satisfaction of a set of security requirements for a concrete application through reusable
models, (4) treat the validity of security objectives using appropriate policy models, and
(5) generate new artifacts as feedback on the software architecture model and its security.

6.9 Conclusion

In this chapter, we proposed an approach to security objectives specification, verification,
and treatment in component-based software architecture models following two levels of
specifications : (1) logical specification of security objectives in the form of security proper-
ties of the system model using first-order logic, as an abstract and technology-independent
formalism; (2) an interpretation of the logical specification in Alloy as tooled languages,
and (3) for each representative CIAA security property, an appropriate security policy to
make the security property hold. In addition, we presented our first experiment of using
Coq, as a proof assistant, in the context of security-by design to check the validity of a
property as a policy to indicate the fulfillment of the security objective.

144

6.9. CONCLUSION

We keep the domain specifying security requirement categories at an abstract level to
remain independent of any particular technology or implementation of the model aligned
with the approach described in Section 6.3. This can allow these formal specifications to
be applied to different implementations or architectures supporting the notion of message-
passing communication which fosters reuse.

Furthermore, we walked through an MDE-based prototype connected to a tooled for-
mal language (Alloy and Coq) to support the proposed approach. An example of this
tool suite is constructed using EMFT, Xtext, and Xtend and is currently provided in the
form of Eclipse plug-ins. The combined formal modeling and MDE to specify security
objectives and develop their targeted system security requirements allows to develop an
accurate analysis, for evaluation and/or certification.

145

CHAPTER 6. SECURITY OBJECTIVES

146

Chapter 7

Evaluation of the contributions

Contents
7.1 Introduction . 147

7.2 Case study . 147

7.3 Discussions . 157

7.1 Introduction

This chapter assesses the feasibility of the contributions of our work. We first report
an industrial case study performed in the metrology domain Section 7.2, followed by
discussions on the contributions and feasibility of the proposed approaches (Section 7.3).
The case study enables us to determine whether the approach leads to a simplification of
the engineering process steps, whereas the discussions highlight the benefits and potential
applications of the proposed approach, as well as the potential for its generalization and
extension. With regard to our contributions, we deal particularly with C7 related to the
research objective RO2 .

7.2 Case study

We use smart meter gateway systems to exemplify the proposed approaches. The aim of
this case study is providing a methodology to improve existing approaches to engineering
secure systems using MDE and formal techniques. We evaluate the proposed approach in
the construction of a methodology that is adapted for engineering secure systems focusing
on the architecture design, from the negative and positive perspectives.

147

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

7.2.1 Expressing the architecture of the smart meter gateway

We start by defining the component types and the interfaces and connectors using the
software architecture meta-model concepts of our DSL model.

Listing 7.1 depicts the DSL model specification of the smart meter gateway application
architecture described in Figure 2.10, with respect to the functional requirements. Lines 2-
5 specify the data types required to represent the consumption data, meter data, requested
consumption data, and requested meter data, respectively. Lines 6-9 specify the data
components of the component-port-connector meta-model (see Section 4.6.2). Similarly,
Lines 10-13 specifies the connectors, Lines 14-23 specify the ports, and Lines 24-29 specify
the connectors for the smart meter gateway application according to the component-port-
connector meta-model.

1 architecture {
2 datatype CD
3 datatype MD
4 datatype ReqCD
5 datatype ReqMD
6 data DataCD { datatypes { CD }}
7 data DataMD { datatypes { MD }}
8 data DataReqCD { datatypes { ReqCD }}
9 data DataReqMD { datatypes { ReqMD }}

10 component Gateway { uses PortGatewayCD PortGatewayMD PortGatewayReqCD
PortGatewayReqMD }

11 component Meter { uses PortMeterMD PortMeterReqMD }
12 component Rrc { uses PortRrcCD PortRrcReqCD }
13 component Consumer {uses PortConsumerCD PortConsumerReqCD }
14 port PortGatewayCD { kind OUTPUT realizes DataCD }
15 port PortGatewayMD { kind INPUT realizes DataMD }
16 port PortGatewayReqCD { kind INPUT realizes DataReqCD }
17 port PortGatewayReqMD { kind OUTPUT realizes DataReqMD }
18 port PortMeterMD { kind OUTPUT realizes DataMD }
19 port PortMeterReqMD { kind INPUT realizes DataReqMD }
20 port PortRrcCD { kind INPUT realizes DataCD }
21 port PortRrcReqCD { kind OUTPUT realizes DataReqCD }
22 port PortConsumerCD { kind INPUT realizes DataCD }
23 port PortConsumerReqCD { kind OUTPUT realizes DataReqCD }
24 connectorMPS ConnectorGatewayMeterMD { connects PortGatewayMD

PortMeterMD }
25 connectorMPS ConnectorGatewayMeterReqMD { connects PortGatewayReqMD

PortMeterReqMD }
26 connectorMPS ConnectorGatewayRrcCD { connects PortGatewayCD PortRrcCD

148

7.2. CASE STUDY

}
27 connectorMPS ConnectorGatewayRrcReqCD { connects PortRrcReqCD

PortGatewayReqCD }
28 connectorMPS ConnectorGatewayConsumerCD { connects PortGatewayCD

PortConsumerCD }
29 connectorMPS ConnectorGatewayConsumerReqCD { connects

PortConsumerReqCD PortGatewayReqCD }
30 }

Listing 7.1: A smart meter gateway application using our DSL Model

7.2.2 Security analysis

In the next step, the architect can specify security requirements upon the architecture
model. The security characteristics of the Smart Meter Gateway can be easily extracted
from the protection profile of the gateway of a smart metering system [18]. In this
study, we focus only on the protection of the consumption data asset (with some revisited
information). The consumption data represents the billing-relevant part of the meter
data.

This asset faces the following threats:

1. Spoofing, tampering, elevation of privilege, repudiation: comparable to a classic
meter and its security requirements

2. Information disclosure: due to privacy concerns

3. Denial of Service: loss of data during the communication hinders proper operation

The designer can do an analysis using either the negative view using threat modeling,
or the positive view using objective modeling, or both in a complementary way. In the
following, we do the analysis for the Smart Meter Gateway first using the negative view,
and then the positive view.

7.2.2.1 Negative perspective (security threats)

The architect can reuse the previously defined DSL security threat libraries (e.g., sender-
Spoofing) to seek threats on the concrete architecture (see Listing 7.2). According to
the smart meter architecture and its security characteristics, we consider the connec-
tors that are transmitting consumption data (i.e., ConnectorGatewayRrcCD, Connector-
GatewayRrcReqCD, ConnectorGatewayConsumerCD and ConnectorGatewayConsumer-
ReqCD) and components that are injecting/intercepting consumption data (i.e., Gateway,

149

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

Consumer, and Rrc). For example, Lines 2-3 specifies that the ConnectorGatewayRrcCD
connector faces spoofing, tampering, denial-of-service, and information disclosure threats.
Similarly, Lines 10-11 specifies that the Gateway component faces repudiation and eleva-
tion of privilege threats.

1 threat {
2 connector ConnectorGatewayRrcCD Gateway Rrc CD {
3 senderSpoofing payloadTampering payloadStaleness payloadDisclosure }
4 connector ConnectorGatewayRrcReqCD Rrc Gateway CD {
5 senderSpoofing payloadTampering payloadStaleness payloadDisclosure }
6 connector ConnectorGatewayConsumerCD Gateway Consumer CD {
7 senderSpoofing payloadTampering payloadStaleness payloadDisclosure }
8 connector ConnectorGatewayConsumerReqCD Consumer Gateway CD {
9 senderSpoofing payloadTampering payloadStaleness payloadDisclosure }

10 component Gateway CD {
11 sendReceiveRepudiation sendReceiveElevation }
12 component Rrc CD {
13 sendReceiveRepudiation sendReceiveElevation }
14 component Consumer CD {
15 sendReceiveRepudiation sendReceiveElevation }
16 }

Listing 7.2: Threat detection on consumption data asset

The next step is to use the model transformation engine to generate the corresponding
Alloy model, where the formal specification of threats are incorporated into the gener-
ated model reusing the threat Alloy model libraries (Listing 7.3). In the generated Al-
loy model shown in Listing 7.3, the model transformation engine specifies the necessary
datatypes, data, components, ports (Lines 1-12) corresponding to the DSL model de-
picted in Listing 7.1. Furthermore, model transformation engine specifies uses the threat
detection specification depicted in Listing 7.2 to specify assertions indicating the presence
of threats within the model. For example, Lines 14-16 assert and check that there are no
spoofing threats in the ConnectorGatewayRrcCD connector with respect to the consump-
tion data. Similarly, Lines 17-19 assert and check that there are no tampering threats,
Lines 20-23 assert and check that there are no denial-of-service threats, and Lines 24-26
assert and check that there are no information disclosure threats in the ConnectorGate-
wayRrcCD connector with respect to the consumption data. Taken together, Lines 14-26
in Listing 7.3 correspond to the threat detection specification on the consumption data
shown in Listing 7.2, Lines 2-3. Upon verification, the generated threat modeling report
(Figure 7.1) shows that several threats are detected for the considered connectors and
components.

150

7.2. CASE STUDY

1 sig CD extends DataType {}
2 sig PayloadCD extends Payload {}{
3 type = CD }
4 ...
5 sig DataCD extends Data {}{
6 datatypes = CD }
7 ...
8 sig Gateway extends Component {}{
9 uses = PortGatewayCD + PortGatewayMD + PortGatewayReqCD +

PortGatewayReqMD }
10 ...
11 sig PortGatewayCD extends Port {}{
12 realizes = DataCD }
13 ...
14 assert threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_senderSpoofing {
15 no SenderSpoofing .holds[Gateway , Rrc , PayloadCD]}
16 check threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_senderSpoofing for 3 but 5 Tick
17 assert threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadTampering {
18 no PayloadTampering .holds[Gateway , Rrc , PayloadCD]}
19 check threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadTampering for 3 but 5 Tick
20 assert threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadDropping {
21 no PayloadDropping .holds[Gateway , Rrc , PayloadCD]}
22 check threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadDropping for 3 but 5 Tick
23 assert threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadDisclosure {
24 no PayloadDisclosure .holds[Gateway , Rrc , PayloadCD]
25 }
26 check threat_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadDisclosure for 3 but 5 Tick
27 ...
28 assert threat_component_Gateway_CD_sendReceiveElevation {
29 no SendReceiveElevation .holds[Gateway , PayloadCD]}
30 check threat_component_Gateway_CD_sendReceiveElevation for 3 but 5 Tick
31
32 assert threat_component_Gateway_CD_sendReceiveRepudiation {
33 no SendReceiveRepudiation .holds[Gateway , PayloadCD]}

151

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

34 check threat_component_Gateway_CD_sendReceiveRepudiation for 3 but 5
Tick

35 ...

Listing 7.3: Generated Alloy model for the threat detection on consumption data asset

Figure 7.1: Threat report (Detected threats in the Gateway application)

Then, as depicted in Listing 7.2, the architect revisits the set of policies reusing the
previously developed DSL security policy libraries with the help of the generated modeling
report that suggests adequate security policies associated with the identified threats (e.g.,
spoofProof) in order to mitigate them. The final verification generates a threat modeling
report that shows no more threats are found, meaning that the set of suggested security
policies are complete regarding the identified threats. Then, a policy modeling report
(Figure 7.2) that sums up this set of security policies is generated. This check indicates
that the system model is secure with respect to the consumption data asset.

1 policy {
2 connector ConnectorGatewayRrcCD {
3 spoofProof tamperProof staleProof informationDisclosureProof }
4

152

7.2. CASE STUDY

5 connector ConnectorGatewayRrcReqCD {
6 spoofProof tamperProof staleProof informationDisclosureProof }
7 connector ConnectorGatewayConsumerCD {
8 spoofProof tamperProof staleProof informationDisclosureProof }
9 connector ConnectorGatewayConsumerReqCD {

10 spoofProof tamperProof staleProof informationDisclosureProof }
11 component Gateway {
12 repudationProof EoPProof }
13 component Rrc {
14 repudationProof EoPProof }
15 component Consumer {
16 repudationProof EoPProof }
17 }

Listing 7.4: Specification of policy of the gateway application for mitigate threats

Figure 7.2: Policy report (Policies applied to mitigate the detected threats in the Gateway
application)

153

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

7.2.2.2 Positive perspective (security objectives)

The architect can reuse the previously defined DSL security objectives libraries (e.g., pay-
loadConfidentiality) to seek the satisfaction on the concrete architecture (see Listing 7.5).
According to the smart meter architecture and its security characteristics, we consider
the connectors that are transmitting consumption data (i.e., ConnectorGatewayRrcCD,
ConnectorGatewayRrcReqCD, ConnectorGatewayConsumerCD and ConnectorGateway-
ConsumerReqCD) and components that are injecting/intercepting consumption data (i.e.,
Gateway, Consumer, and Rrc). For example, Lines 2-4 specifies that the ConnectorGate-
wayRrcCD connector must ensure confidentiality, integrity, availability, and authenticity
objectives.

1 objective {
2 connector ConnectorGatewayRrcCD Gateway Rrc CD{
3 payloadConfidentiality payloadIntegrity messageAvailability

messageAuthenticity
4 }
5 connector ConnectorGatewayRrcReqCD Rrc Gateway CD {
6 payloadConfidentiality payloadIntegrity messageAvailability

messageAuthenticity
7 }
8 connector ConnectorGatewayConsumerCD Gateway Consumer CD{
9 payloadConfidentiality payloadIntegrity messageAvailability

messageAuthenticity
10 }
11 connector ConnectorGatewayConsumerReqCD Consumer Gateway CD{
12 payloadConfidentiality payloadIntegrity messageAvailability

messageAuthenticity
13 }
14 }

Listing 7.5: Objective satisfaction on consumption data asset

The next step is to use the model transformation engine to generate the corresponding
Alloy model, where the formal specification of objectives are incorporated into the gen-
erated model reusing the objectives Alloy model libraries (Listing 7.5). In the generated
Alloy model shown in Listing 7.1, the model transformation engine specifies the necessary
datatypes, data, components, and ports (Lines 1-12) corresponding to the DSL model
depicted in Listing 4.7.1. Furthermore, model transformation engine specifies uses the
objectives validation specification depicted in Listing 7.6 to specify assertions ensure the
satisfaction of objectives within the model. For example, Lines 17-19 assert and check
that the confidentiality objective is satisfied in the ConnectorGatewayRrcCD connector

154

7.2. CASE STUDY

with respect to the consumption data. Similarly, Lines 20-22 assert and check that the
integrity objective is respected, Lines 23-25 assert and check that the availability objective
is valid, and Lines 27-28 assert and check that the authenticity objective is satisfied in
the ConnectorGatewayConsumerReqCD connector with respect to the consumption data.
Upon verification, the generated objective modeling report (Figure 7.3) shows that several
objectives are violated (i.e., are not satisfied) for the considered connectors.

1 sig CD extends DataType {}
2 sig PayloadCD extends MsgPassing {}{ payload .type = CD}
3 ...
4 sig DataCD extends Data {}{
5 datatypes = CD }
6 ...
7 sig Gateway extends Component {}{
8 uses = PortGatewayCD + PortGatewayMD + PortGatewayReqCD +

PortGatewayReqMD }
9 sig Meter extends Component {}{

10 uses = PortMeterMD + PortMeterReqMD }
11 ...
12 sig ConnectorGatewayMeterMD extends ConnectorMPS {}{
13 all t:Tick | PortGatewayMD + PortMeterMD in connects .t }
14 sig ConnectorGatewayMeterReqMD extends ConnectorMPS {}{
15 all t:Tick | PortGatewayReqMD + PortMeterReqMD in connects .t }
16 ...
17 assert objective_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadConfidentiality {
18 PayloadConfidentiality .holds[Gateway , Rrc , PayloadCD] }
19 check objective_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadConfidentiality for 4 but 5 Tick
20 assert objective_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadIntegrity {
21 PayloadIntegrity .holds[Gateway , Rrc , PayloadCD] }
22 check objective_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_payloadIntegrity for 4 but 5 Tick
23 assert objective_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_messageAvailability {
24 MessageAvailabilit .holds[Gateway , Rrc , PayloadCD] }
25 check objective_connector_ConnectorGatewayRrcCD_

Gateway_Rrc_CD_messageAvailability for 4 but 5 Tick
26 ...
27 assert objective_connector_ConnectorGatewayConsumerReqCD_

Consumer_Gateway_CD_messageAuthenticity { MessageAuthenticity .holds[
Consumer , Gateway , PayloadCD] }

155

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

28 check objective_connector_ConnectorGatewayConsumerReqCD_
Consumer_Gateway_CD_messageAuthenticity for 4 but 5 Tick

Listing 7.6: Generated Alloy model for the objective validation on consumption data asset

Figure 7.3: Objective report (Violated and satisfied objectives in the Gateway application)

Then, as depicted in Listing 7.4, the architect revisits the set of requirements reusing
the previously developed DSL policy libraries with the help of the generated modeling
report that suggests adequate policy to fulfill identified violated objective (e.g., restriveSet-
Pld) in order to satisfy them. The final verification generates an objective modeling report
that shows all the security objectives are satisfied, meaning that the set of suggested policy
is complete regarding the identified security objectives. Then, a policy modeling report
that sums up this set of policy is generated (Figure 7.4). This check indicates that the
system model is secure with respect to the consumption data asset.

1 policy {
2 connector ConnectorGatewayRrcCD {
3 restrictiveGetPld restrictiveSetPld lossFreeInject restrictiveSetSrc
4 }
5 connector ConnectorGatewayRrcReqCD {
6 restrictiveGetPld restrictiveSetPld lossFreeInject restrictiveSetSrc
7 }

156

7.3. DISCUSSIONS

8
9 connector ConnectorGatewayConsumerCD {

10 restrictiveGetPld restrictiveSetPld lossFreeInject restrictiveSetSrc
11 }
12 connector ConnectorGatewayConsumerReqCD {
13 restrictiveGetPld restrictiveSetPld lossFreeInject restrictiveSetSrc
14 }
15 }

Listing 7.7: Specification of policy of the gateway application for security objectives
validation

Figure 7.4: Policy report (Policies applied to satisfy the objectives in the Gateway appli-
cation)

7.3 Discussions

In this section, we discuss the assessments and potential applications of the proposed
approach, as well as the potential for its generalization and extension.

157

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

7.3.1 Applications of the proposed approach

The proposed approach yields a number of useful capabilities for system architects and
designers. First, it enables them to find security bugs early in the development of a
system. It is well known that correcting software errors and defects, especially those re-
lated to system security, at late stages of development is very costly. By employing the
proposed approach, system architects and designers can find and take corrective actions
before any lines of code are written. Second, it enables them to better understand their
security requirements. Good threat modeling approaches can help to ask, “Is this really a
requirement?” Ultimately, the proposed approach helps system architects and designers
to study the interplay between security requirements, threats, and mitigations. By em-
ploying the proposed approach, system architects and designers can determine whether
they have a complete set of security requirements that can effectively address the known
threats in their systems. Furthermore, the generated threat and objective reports can
support security evaluation and assurance activities by providing evidence that system-
atic analyses have been performed at the Architecture Design phase of the SDLC and
that identified threats have been adequately mitigated through the introduction of new
security requirements that are satisfied by the modeled software architecture. The need
to support security assurance at the architecture design phase has been discussed in [127].

7.3.2 Generalization of the proposed approach

We have demonstrated the practical application of the proposed approach in the context
of the Royce waterfall model (SDLC) where we used Microsoft’s STRIDE threat classi-
fication and CIAA objective classification, first-order and modal logic as a technology-
independent specification language, and Alloy as a language with automated tool support
for model checking and verification. However, as described in Chapter 3 the proposed
approach can be generalized, enabling it to be applied in alternative SDLCs and using
other threat or objective classification references, technology-independent specification
languages, and model verification tools.

For example, we can envision the proposed approach to be applied in another SDLC,
such as an Agile process with additional domain specific modeling tools, where CAPEC
or another domain-specific threat model (e.g., IoT-based big data environment [139],
MPSoC-based embedded applications [132], etc.) is used as the threat classification ref-
erence, temporal logic is used as a technology-independent specification language, and
UPPAAL is used as a language with automated tool support for model checking and
verification. Such a realization of the proposed approach would simply require a new

158

7.3. DISCUSSIONS

definition of the DSL using appropriate domain-specific modeling environments, and the
formalization of the threats, objectives and the metamodel in the chosen specification
languages (e.g., temporal logic and UPPAAL). After applying the approach with the ac-
companying tool support, the resulting security policies can then be incorporated into
stories or scenarios as part of the Agile development process in future sprints.

With this generalization, the proposed approach can find use among practitioners
familiar with a wide variety of model-driven engineering tools and environments.

7.3.3 Tool support : automated tool and proof complementarity

In Section 2.6.2, we argue our choices of Alloy and Coq as formal tool for the development
of the support tool for our proposed approach. We presented the two selected tools
separately for the security objectives in Section 6.8. However, we could imagine a tool
suite that combines both tools. In fact, as we stated earlier, Alloy offer issues detection
(counter-examples) and better automation, whereas Coq offer a better but more complex
verification (proof). Thus, it might be possible to get the best of both. The idea would be
to start the design with Alloy as formal tool using its advantage for automation allowing
rapid design iterations and issues detection; and, then use Coq as a complement where
there is either: a possible doubt about the Alloy scope’s sufficiency; or a very critical part
in the design that can gain from additional verification through proof validation. As a
result, in this vision the two formal tools would be complementary in one approach. Of
course, we only suggest here the starting idea; a more precise study should be conducted
to determine the feasibility.

159

CHAPTER 7. EVALUATION OF THE CONTRIBUTIONS

160

Chapter 8

Conclusion & future works

Contents
8.1 Summary and contributions . 161

8.2 Limitations and future works 163

8.3 Perspectives . 166

8.1 Summary and contributions

Security is a quality attribute that is becoming increasingly critical in current software-
intensive systems and is thus gaining substantial attention by the research and industrial
community. In our work, we proposed an approach to create methodological tool support
for security modeling and analysis in the context of component-based software architec-
ture, following a negative (i.e., security threats) and positive (i.e., security objectives)
perspectives. The proposed approach for engineering secure systems is dependent on the
software architecture model, the underlying communication model, threat and security
objectives models as first-class citizens to specify applications within a particular domain
and focuses on the problem of software system architecture engineering using a design
philosophy that fosters reuse.

This approach may significantly reduce the cost of engineering a system because it
enables security issues to be addressed early in the system development process (archi-
tecture design) while simultaneously relieving the developer of the technical details. We
begin by specifying a conceptual model of the target system and the desired concerns
and proceed by the definition of a logical specification of the system architecture, the
computing model and concerns as properties using first-order and modal logic as an ab-

161

CHAPTER 8. CONCLUSION & FUTURE WORKS

stract and technology-independent formalism. We then develop modeling languages and
interpretations in tooled formal languages that are appropriate for the targeted design
and analysis activities. The results of these efforts are subsequently employed to specify
and define a security threat and objectives properties (formal) models and solution (e.g.,
in the form of a policy). These results illuminate how to build a bridge between these
models.

Developing an application using model-based development processes and reusing ex-
isting (formal) property model libraries requires finding and tailoring suitable properties
to a form that is appropriate for the targeted development environment. The integration
of our approach in existing SDLC enables a domain engineer to reuse the resultant model
libraries that have been specified and verified and then adapted for a given engineering
environment (development platform) to develop a domain-specific application.

In Chapter 3, we proposed a methodology for the creation of a design and analysis
framework and provided some guidelines on how the resulting methodology may be used
to achieve security within exiting SDLC methodologies (answering part of RO1 and
RO2).

In Chapter 4, we described a formal framework to support the rigorous design of soft-
ware architectures focusing on the communication aspects at the architecture level. The
framework is based on a component-port-connector meta-model describing the high-level
concepts of distributed software architecture supporting message passing communication
(answering part of RO1). Then, we formally specified and verified a software architecture
based on a set of reusable models, namely connectors (answering part of RO2).

In Chapter 5 and Chapter 6, we respectively proposed an approach to threat spec-
ification, detection, and treatment and security objectives specification, detection, and
treatment in component-based software architecture models via reusable security threat,
objectives and policies formal model libraries. First, we presented a process of develop-
ment of reusable formal model libraries for the specification and verification of security
threats and objectives by a security expert (answering part of RO1). Second, we pre-
sented a process of secure architectural design by an architect based on the libraries
previously specified to specify and design secure software architectures (answering part of
RO2). Our solution is based on formal techniques for the purposes of precise specification
and verification of security aspects as properties of a modeled system.

Furthermore, for each studied architecture concerns (message passing communication,
security threats and security objectives), we walked through an MDE-based prototype
connected to a tooled formal language to support the proposed approach (answering
RO3). An example of this tool suite is constructed using EMFT, Xtext, and Xtend and

162

8.2. LIMITATIONS AND FUTURE WORKS

is currently provided in the form of Eclipse plug-ins that are accompanied by the Alloy
Analyser and Coq IDE. The combined formal modeling and MDE to specify security
concerns and develop their targeted system security policies allows to develop an accurate
analysis, for evaluation and/or certification.

In Chapter 7, we illustrate the application of the proposed approach and the developed
tool model the secure software architecture of Smart Meter Gateway System, reusing the
developed formal model libraries for communication, and security threats and objectives
(answering part of RO2). We believe that the result of this part is of practical interest.
Basically, our framework and the resulted tool support, aid to illuminate the key ideas to
use MDE and formal techniques for the design and analysis of software architectures and
security in unison.

8.2 Limitations and future works

In this section, we consider the limitations and future work of different parts of the
approach.

1. Risk assessment. Risk assessment can be improved by automating the identification
of system threats. This is possible by reusing the work of software threat analysis.
In fact, software threat analysis is used to detect threats at the software architecture
design level according to formalized rules. The formalization of rules describes the
context in which a certain threat may exploit an absence of one or more security
mechanisms, their weakness or their incorrect integration. Therefore, at the level
of system architecture, the formalization of system threats may be simplified to the
non-existence of security mechanism.

2. Patterns. As stated in Section 1.1, one of our next goal is to use this work to
improvement our Pattern Based System Engineering (PBSE) framework [48] con-
sidering security and safety requirements within software architectures. We plan to
transform our PBSE pattern modeling concepts to Alloy specifications to ensure se-
mantic validation. We plan to use our security property modeling approach during
the specification and classification of security patterns such as those used in [122],
and we intend to add more formality to ensure semantic validation transforming ex-
isting Pattern Based System Engineering (PBSE) concepts [32, 48] to Alloy and/or
Coq specifications. In addition, we aim at refining our modeling framework with
properties and reasoning of the Security Modeling Framework (SeMF) [45]. Our

163

CHAPTER 8. CONCLUSION & FUTURE WORKS

starting point is modeling security patterns in Alloy from [51]. Moreover, some tim-
ing and/or other resource constraints can also be enforced to verify the architecture
models.

3. Tool support. Another objective for the near future is to continue the development
of the tool support described in Section 4.8, Section 5.7 and Section 6.8.

(a) Automation. We would like to improve manual and semi-automated parts of the
tool with more automation. For example, we plan to develop the interfaces with
the Alloy Analyzer to transfer and to highlight the results of the verification
into the DSL model through backward transformation (Alloy model to DSL
model) i.e., an automatic (or systematic) incorporation of the results of analysis
(report) into the DSL software architecture model.

(b) Reuse. We plan to improve the tool support to cover more aspects of the
Krueger [69] fundamental reuse issue. For instance, we seek to handle the
storage and the selection of the reusable models [44].

4. Assessment. In the near future, we plan to conduct an experiment in which we
will present the approach and the solution of our case study to collect feedback
from industry practitioners through a survey. In particular, we wanted to assess
the perception of using formal techniques coupled with the modeling approaches to
engineering secure systems. Duplicate the study to address secure software system
development in other domains and perform the survey with other subjects (e.g.,
students) have been also considered as future work.

5. Approach Generalization. We will seek new opportunities to apply the proposed
approach to other domains. This task requires an instantiation of the complete
software engineering tool and method and an evaluation of the experiences of many
users across many domains. We would like to enhance the proposed approaches
for the integration with other model-based approaches, architecture models, secu-
rity models (e.g., the ENISA threat taxonomy [31]), formal techniques (e.g., CTL,
NuSMV, Event-B), and software development life cycle (e.g., Agile, Devops).

6. Interplay of the negative and positive security perspectives. An important next step
is to investigate the interplay of concerns in order to better understand how they
may be impacted by one another. This type of investigation is important because
it can help us understand how, even if we have a protection (e.g., a policy) in
place to protect the system against a threat, this protection may be ineffective if an

164

8.2. LIMITATIONS AND FUTURE WORKS

adversary is able to pivot to bypass other protections that are in place. Alternatively,
a protection may be inadequate because other functional concerns, such as the
computation time overhead added by a protection, may impact a system safety
requirement. To that end, we intend to investigate: threats interplay, interplay
between security objectives and threats, and other relevant non-functional concerns.

(a) Threats interplay. With the proposed approach, it may also be possible to
further study the relationship between threats that have been detected in the
software architecture model to determine whether the existence of one threat
facilitates the existence of another. There are a number of methods to imple-
ment an attack to realize a given threat, and additionally, an attack is usually
the sum of different actions accomplished by the adversary, as in the case of
an attack tree. As we have seen in the past, adversaries often will exploit one
vulnerability (which leads to a threat) in order to exploit another vulnerability
to escalate their reach in the system. This idea is often referred to as pivoting
or a multilayered attack. For example, an adversary may spoof an identity
in order to tamper with information that they would otherwise not have ac-
cess to. In this case, the fact that it is possible for the adversary to realize the
spoofing threat leads to the realization of the tampering threat. Thus, if we are
able to determine these relationships, it can allow us to target our mitigation
strategies by eliminating the spoofing threat which will subsequently eliminate
the tampering threat. The formal setting of the proposed approach provides
many essential mechanisms that will enable this kind of reasoning to aid in
identifying the root causes leading to the existence or emergence of detected
threats. Such a capability is expected to have a major impact on the time and
resources required to treat threats in software systems. Of course, we would
like to conduct similar investigations for the security objectives.

(b) Security Objectives & Threats. Another interesting point would be to investi-
gate the interaction between objectives and threats. As a starting point, we
could formalize the links between the STRIDE classification and the objec-
tives classification provided by OWASP [106]. This way, we could expand the
meta-model with new associations that are similar to satisfy relationships be-
tween objectives and policies and mitigate relationships between policies and
threats. It would allow for a greater complementary between the proposed pos-
itive view (objective) and negative view (threat) in our approach. Intuitively,
a threat could violate an objective. Fulfilling an objective could protect against

165

CHAPTER 8. CONCLUSION & FUTURE WORKS

one or multiple threat. As a result, a more comprehensive approach could be
proposed.

(c) Others non-functional concerns. In addition, interplay with other non-functional
aspects such as performance [110] or safety [67] could be considered to manage
threats & objectives and to select the appropriate countermeasures. The study
interplay of Security and Dependability (S&D) was started in our team in [43]
but in a semi-formal way.

8.3 Perspectives

Perspectives emerging from this thesis are manifold. These perspectives are long-term
objectives and consist of enhancements related to (1) linking the approach with the im-
plementation phase and (2) managing the implemented and deployed system, and finally
(3) enabling security compliance-By-Design.

1. Implementation phase. Our approach focused on the architecture design phases. We
need to inspect a way to move to the implementation phase without compromising
security enforced at prior phases.

2. Governance risk and compliance. In this PhD thesis, we have focused on designing
secure software architectures through security design and analyzes from the nega-
tive and positive perspectives. However, once a software system is implemented and
deployed, risks need to be managed. These risks should be linked to an organiza-
tion’s strategy. Governance, Risk and Compliance (GRC) refers to an organization’s
strategy for managing the broad issues of corporate governance, enterprise risk man-
agement (ERM) and corporate compliance with regards to regulations. For instance,
Identity and Access Management (IAM) is a kind of governance about managing
the life cycle of identities inside an organization (from recruitment to departure)
and their impact on the information system.

3. Model-Based Security Compliance-By-Design. Currently, there is a need for a sys-
tematic way to validate and trace the application and compliance of cybersecurity
controls mandated by standards and regulations throughout the lifecycle of large
and complex systems. The traceability of this compliance is a common problem in
the industry and is expected to become increasingly challenging to address as these
systems continue to evolve. In this topic, we will focus specifically on managing
the traceability of compliance requirements to the architecture and design in the

166

8.3. PERSPECTIVES

context of cybersecurity evaluation. For example, with the trend of Space Cyber
Security gaining more traction [11], more of these security controls and standards,
which for the most part, is a combination of NIST 800-53 [39] and CNSS Instruction
No. 1253 [99] and CNSS Policy 12 [98], will be developed and enforced. Further-
more, because these security controls are regulated by an external party, there is
a challenge in tracing compliance of these controls across the developed system
throughout its lifecycle. To achieve our general objective and realize the expected
project outcomes, we will focus on achieving the following specific objectives:

(a) Design and specify a security compliance-by-design architecture framework and
methodology. Design and specify a security compliance-by-design architecture
framework and methodology for an industrial application: A software archi-
tecture defines the organization of the software in terms of configurations of
components, connectors capturing the interactions among components, and
constraints on the components, connectors and configurations. We target the
development of such a configuration of the components as a reference architec-
ture of the target application domain such that it satisfies the security compli-
ance imposed by external third-party regulators (i.e., the security compliance
requirements) for the target application domain.

(b) Develop traceability support for security compliance requirements and the ref-
erence architecture components. Develop traceability support for security com-
pliance requirements and the developed reference architecture components: To
support security assurance and compliance efforts, it is important to be able
to link the components of the reference architecture developed to the security
compliance requirements identified. This linkage is known as traceability and it
helps to provide the rationale and justification for where specific security com-
pliance requirements are taken into account in components of the developed
architecture. This contextual information enables more effective checking that
all of the security compliance requirements been accounted for in the system
design.

167

CHAPTER 8. CONCLUSION & FUTURE WORKS

168

Bibliography

[1] Alloy Analyzer. http://alloytools.org/. [Accessed: October-2019].

[2] Systems and software engineering – Vocabulary. ISO/IEC/IEEE 24765:2010(E),
pages 1–418, 2010.

[3] M. Abi-Antoun and J. M. Barnes. Analyzing security architectures. In Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
ASE ’10, pages 3–12, 2010.

[4] M. Abi-Antoun and J. M. Barnes. STRIDE-based security model in Acme. Technical
Report CMU-ISR-10-106, Carnegie Mellon University, January 2010.

[5] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge:
Cambridge UP, 2010.

[6] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Trans.
Softw. Eng. Methodol., 6(3):213–249, 1997.

[7] M. Almorsy, J. Grundy, and A. S. Ibrahim. Automated software architecture secu-
rity risk analysis using formalized signatures. In 2013 35th International Conference
on Software Engineering (ICSE), pages 662–671, 2013.

[8] C. Atkinson, J. Bayer, and D. Muthig. Component-Based Product Line Develop-
ment: The KobrA Approach. In Software Product Lines, The Springer International
Series in Engineering and Computer Science, pages 289–309. Springer, Boston, MA,
2000.

[9] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I. Mistŕık, editors. Relating Software
Requirements and Architectures. Springer, 2011.

[10] A. Bagnato and Bagnato. Handbook of Research on Embedded Systems Design. IGI
Global, 2014.

169

http://alloytools.org/

BIBLIOGRAPHY

[11] B. Bailey, R. Speelman, P. Doshi, N. Cohen, and W. Wheeler. Defending spacecraft
in the cyber domain. Aerospace Corp. TR OTR202000016, El Segundo, CA, 2019.

[12] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, E. Giménez, H. Herbe-
lin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Säıbi, and
B. Werner. The Coq Proof Assistant Reference Manual : Version 6.1. Research
Report RT-0203, INRIA, May 1997. Projet COQ.

[13] B. J. Berger, K. Sohr, and R. Koschke. Extracting and analyzing the implemented
security architecture of business applications. In 2013 17th European Conference
on Software Maintenance and Reengineering, pages 285–294, 2013.

[14] J. Bergstra and J. Klop. Process algebra for synchronous communication. Informa-
tion and Control, 60(1-3):109–137, 1984.

[15] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science An EATCS Series. Springer Berlin/Heidelberg, 2004.

[16] L. Bettini. Implementing Domain Specific Languages with Xtext and Xtend - Second
Edition. Packt Publishing, 2nd edition, 2016.

[17] J. Bézivin. Towards a precise definition of the OMG/MDA framework. In Proceed-
ings of ASE, pages 273–280. IEEE Computer Society Press, 2001.

[18] BSI. Protection Profile for the Gateway of a Smart Metering System (Smart Meter
Gateway PP). Common Criteria Protection Profile BSI-CC-PP-0073, Bundesamt
für Sicherheit in der Informationstechnik, 2014.

[19] T. Bures and F. Plasil. Communication style driven connector configurations. In
C. V. Ramamoorthy, R. Lee, and K. W. Lee, editors, Software Engineering Research
and Applications, pages 102–116. Springer Berlin Heidelberg, 2004.

[20] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Trans-
actions on Computer Systems, 8, 1990.

[21] B. F. Chellas. Modal logic: an introduction. Cambridge university press, 1980.

[22] O. Consortium. Joram: Java open reliable asynchronous messaging. https://
joram.ow2.io/, 2018. [Accessed: April-2019].

170

https://joram.ow2.io/
https://joram.ow2.io/

BIBLIOGRAPHY

[23] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems: Con-
cepts and Design. Addison-Wesley Publishing Company, 5th edition, 2011.

[24] I. Crnkovic. Building Reliable Component-Based Software Systems. Artech House,
Inc., Norwood, MA, USA, 2002.

[25] I. Crnkovic. Component-based software engineering for embedded systems. In
Proceedings of the 27th International Conference on Software Engineering, ICSE
’05, pages 712–713. ACM, 2005.

[26] D. D. Garlan. Formal Modeling and Analysis of Software Architecture: Compo-
nents, Connectors, and Events. In Third International School on Formal Methods
for the Design of Computer, Communication and Software Systems: Software Ar-
chitectures, pages 1–24. Springer Berlin Heidelberg, 2003.

[27] P. Devanbu, S. Stubblebine, S. S. Premkumar, and T. Devanbu. Software engineer-
ing for security - a roadmap. In Proceedings of the Conference on The Future of
Software Engineering, ICSE ’00, pages 227–239. ACM, 2000.

[28] D. F. D’Souza and A. C. Wills. Objects, components, and frameworks with UML :
the catalysis approach. Addison-Wesley Professional, 1998.

[29] E. A. Emerson. Temporal and modal logic. In Formal Models and Semantics, pages
995–1072. Elsevier, 1990.

[30] EU. Regulatin (eu) 2016/679 (general data protection regulation. https://
gdpr-info.eu, 2018. [Accessed: February-2019].

[31] European Union Agency for Network and Information Security (ENISA). Threat
Taxonomy. https://www.enisa.europa.eu/topics/threat-risk-management/
threats-and-trends/enisa-threat-landscape/threat-taxonomy/view, 2016.
[Accessed: November-2018].

[32] E. Fernandez. Security patterns in practice: Building secure architectures using
software patterns. Software Design Patterns. Wiley, ISBN 978-1-119-99894-5, 2013.

[33] R. B. France and B. Rumpe. Domain specific modeling. Software and System
Modeling, 4(1):1–3, 2005.

[34] A. Fuchs, S. Gürgens, and C. Rudolph. Formal Notions of Trust and Confidentiality
- Enabling Reasoning about System Security. Journal of Information Processing,
19:274–291, 2011.

171

https://gdpr-info.eu
https://gdpr-info.eu
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/enisa-threat-landscape/threat-taxonomy/view
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/enisa-threat-landscape/threat-taxonomy/view

BIBLIOGRAPHY

[35] D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture description inter-
change language. In Proceedings of the 1997 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’97, pages 7–22. IBM Press, 1997.

[36] I. Graham, B. Henderson-Sellers, and H. Younessi. The OPEN Process Specification.
ACM Press/Addison-Wesley Publishing Co., 1997.

[37] H. Grandy, D. Haneberg, W. Reif, and K. Stenzel. Developing Provable Secure M-
Commerce Applications. In Emerging Trends in Information and Communication
Security, pages 115–129. Springer, Berlin, Heidelberg, 2006.

[38] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J. Sprinkle. Domain-
Specific Modeling. In P. Fishwick, editor, Handbook of Dynamic System Modeling,
chapter 7, pages 1–20. Chapman & Hall/CRC, 2007.

[39] J. T. F. I. W. Group. Security and privacy controls for information systems and or-
ganizations. special publication (nist sp) 800-53 revision 5 (draft), national institute
of standards and technology, 2020.

[40] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering:
A framework for representation and analysis. volume 34, pages 133–153. IEEE, 2008.

[41] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating
software requirements and architectures using problem frames. In IEEE Joint In-
ternational Conference on Requirements Engineering, pages 137–144. IEEE, 2002.

[42] B. Hamid. SEMCO Project (System and software Engineering with Multi-COncerns
support). http://www.semcomdt.org, 2009.

[43] B. Hamid. Interplay of Security&Dependability and Resource Using Model-Driven
and Pattern-Based Development. In 2015 IEEE Trustcom/BigDataSE/ISPA, vol-
ume 1, pages 254–262. IEEE, 2015.

[44] B. Hamid. A model repository description language - MRDL. In G. M. Kapitsaki and
E. Santana de Almeida, editors, Software Reuse: Bridging with Social-Awareness,
pages 350–367. Springer International Publishing, 2016.

[45] B. Hamid, S. Gürgens, and A. Fuchs. Security patterns modeling and formalization
for pattern-based development of secure software systems. Innovations in Systems
and Software Engineering, Springer, 12(2):109–140, 2016.

172

BIBLIOGRAPHY

[46] B. Hamid and J. Perez. Supporting Pattern-Based Dependability Engineering via
Model-Driven Development: Approach, tool-support and empirical validation. Jour-
nal of Systems and Software, Elsevier, 122:239–273, 2016.

[47] B. Hamid, Q. Rouland, and J. Jaskolka. Distributed maintenance of a spanning tree
of k-connected graphs. In 2019 IEEE 24th Pacific Rim International Symposium
on Dependable Computing (PRDC), pages 209–217. IEEE, 2019.

[48] B. Hamid and D. Weber. Engineering secure systems: Models, patterns and empir-
ical validation. Computers & Security, 77:315–348, 2018.

[49] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and All That
Stuff Part I: The Basic Stuff. Technical report, 2000.

[50] C. L. Heitmeyer. Applying practical formal methods to the specification and analysis
of security properties. In V. I. Gorodetski, V. A. Skormin, and L. J. Popyack, editors,
Information Assurance in Computer Networks, volume 2052 of Lecture Notes in
Computer Science, pages 84–89. Springer Berlin/Heidelberg, 2001.

[51] T. Heyman, R. Scandariato, and W. Joosen. Reusable formal models for secure
software architectures. In Joint Working IEEE/IFIP Conference on Software Ar-
chitecture and European Conference on Software Architecture, pages 41–50, 2012.

[52] T. Heyman, K. Yskout, R. Scandariato, H. Schmidt, and Y. Yu. The security
twin peaks. In Proceedings of the International Symposium on Engineering Secure
Software and Systems (ESSoS), volume LNCS 6542 of Lecture Notes in Computer
Science, pages 167–180. Springer, 2011.

[53] C. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–677,
1978.

[54] C. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene algebra and
its foundations. Journal of Logic and Algebraic Programming, 80(6):266–296, 2011.

[55] S. Hussain, H. Erwin, and P. Dunne. Threat modeling using formal methods: A new
approach to develop secure web applications. In Proceedigns of the 7th International
Conference on Emerging Technologies, pages 1–5, September 2011.

[56] ISO-IEC. Information technology - security techniques - information security man-
agement systems - overview and vocabulary. https://www.iso.org/obp/ui/#iso:
std:iso-iec:27000:ed-5:v1:en:term:3.36, 2018.

173

https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en:term:3.36
https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en:term:3.36

BIBLIOGRAPHY

[57] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

[58] D. Jackson. Alloy: A language and tool for exploring software designs. Commun.
ACM, 62(9):66–76, Aug. 2019.

[59] D. Jackson. Alloy: A language and tool for exploring software designs. Commun.
ACM, 62(9):66–76, 2019.

[60] M. Jan, C. Jouvray, F. Kordon, A. Kung, J. Lalande, F. Loiret, J. F. Navas,
L. Pautet, J. Pulou, A. Radermacher, and L. Seinturier. Flex-eware: a flexible
model driven solution for designing and implementing embedded distributed sys-
tems. Softw., Pract. Exper., 42(12):1467–1494, 2012.

[61] J. Jaskolka, R. Khedri, and Q. Zhang. Endowing concurrent Kleene algebra with
communication actions. In P. Höfner, P. Jipsen, W. Kahl, and M. Müller, editors,
Proceedings of the 14th International Conference on Relational and Algebraic Meth-
ods in Computer Science, volume 8428 of Lecture Notes in Computer Science, pages
19–36. Springer International Publishing Switzerland, 2014.

[62] J. Jürjens. Towards development of secure systems using umlsec. In Proceedings
of the 4th International Conference on Fundamental Approaches to Software Engi-
neering, FASE ’01, pages 187–200. Springer-Verlag, 2001.

[63] J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In J.-M.
Jézéquel, H. H. smann, and S. Cook, editors, UML 2002 - The Unified Modeling
Language, 5th International Conference, Dresden, Germany, September 30 - Octo-
ber 4, 2002, Proceedings, volume 2460 of Lecture Notes in Computer Science, pages
412–425. Springer, 2002.

[64] J. Jürjens. UMLsec: Extending UML for Secure Systems Development. In Proceed-
ings of the 5th International Conference on The Unified Modeling Language, UML
’02, pages 412–425, London, UK, 2002. Springer-Verlag.

[65] R. Khosrav, M. Sirjani, N. Asoudeh, S. Sahebi, and H. Iravanchi. Modeling and
Analysis of Reo Connectors Using Alloy. In Coordination Models and Languages,
pages 169–183. Springer Berlin Heidelberg, 2008.

[66] A. G. Kleppe. A language description is more than a metamodel. In Fourth Inter-
national Workshop on Software Language Engineering, 2007.

174

BIBLIOGRAPHY

[67] J. C. Knight. Safety critical systems: challenges and directions. In Proceedings of
the 24th international conference on software engineering, pages 547–550, 2002.

[68] P. Kruchten. Architectural blueprints - the ”4+ 1” view model of software architec-
ture. IEEE Software, 12(6):42–50, 1995.

[69] C. Krueger. Software Reuse. ACM Compututing Survey, 24(2):131–183, 1992.

[70] S. Lamb. Security features in windows vista and ie7 – microsoft’s view. Network
Security, 2006(8):3 – 7, 2006.

[71] C. E. Landwehr. Formal Models for Computer Security. ACM Computing Surveys,
13:247–278, 1981.

[72] Y. Ledru, A. Idani, J. Milhau, N. Qamar, R. Laleau, J. Richier, and M. Labiadh.
Validation of is security policies featuring authorisation constraints. Int. J. Inf.
Syst. Model. Des., 6(1):24–46, 2015.

[73] Y. Lee, J. Lee, and Z. Lee. Integrating Software Lifecycle Process Standards with
Security Engineering. Computers & Security, 21(4):345–355, 2002.

[74] Y. Lee, Z. Lee, and C. K. Lee. A study of integrating the security engineering
process into the software lifecycle process standard (IEEE/EIA 12207). AMCIS
2000 Proceedings, page 182, 2000.

[75] T. Lodderstedt, D. A. Basin, and J. Doser. Secureuml: A uml-based modeling lan-
guage for model-driven security. In Proceedings of the 5th International Conference
on The Unified Modeling Language, UML ’02, pages 426–441. Springer-Verlag, 2002.

[76] A. Mana and G. Pujol. Towards formal specification of abstract security properties.
In Proceedings of the Third International Conference on Availability, Reliability and
Security, pages 80–87, March 2008.

[77] J. McAffer, J.-M. Lemieux, and C. Aniszczyk. Eclipse Rich Client Platform.
Addison-Wesley Professional, 2nd edition, 2010.

[78] G. McGraw. The security lifecycle-the 7 touchpoints of secure software-just as you
can’t test quality into software, you can’t bolt security features onto code and expect
it to become hack-proof security. In Software Development, volume 13, pages 42–43,
2005.

175

BIBLIOGRAPHY

[79] G. McGraw. Software Security: Building Security In. Addison-Wesley Professional,
2006.

[80] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina. A systematic
review of security requirements engineering. Computer Standards & Interfaces,
32(4):153–165, June 2010.

[81] Microsoft. The STRIDE threat model. Microsoft Corporation, 2009.

[82] Microsoft. Microsoft Security Development Lifecycle (SDL) – version 5.2, 2012.

[83] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

[84] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes part I. Infor-
mation and Computation, 100(1):1–40, September 1992.

[85] MITRE Corporation. Common attack pattern enumeration and classification
(capec). http://capec.mitre.org/, 2018. [Accessed: January-2019].

[86] MITRE Corporation. Common weakness enumeration (cwe). https://cwe.mitre.
org/, 2018. [Accessed: January-2019].

[87] N. Moebius, K. Stenzel, H. Grandy, and W. Reif. SecureMDD: A Model-Driven De-
velopment Method for Secure Smart Card Applications. In International Conference
on Availability, Reliability and Security, ARES’09, pages 841–846, 2009.

[88] P. Mohagheghi and V. Dehlen. Where is the proof?-a review of experiences from
applying mde in industry. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 432–443. Springer, 2008.

[89] R. T. Monroe. Capturing software architecture design expertise with armani. Tech-
nical Report CMU-CS-98-163, Carnegie Mellon University, October 1998.

[90] M. S. Nawaz and M. Sun. Reo2PVS: Formal specification and verification of com-
ponent connectors. In Proceedings of the 30th International Conference on Software
Engineering and Knowledge Engineering, SEKE 2018, pages 390–395, 2018.

[91] OMG. CORBA Specification, Version 3.1. Part 3: CORBA Component Model.
http://www.omg.org/spec/CCM, 2008. [Accessed: November-2009].

176

http://capec.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
http://www.omg.org/spec/CCM

BIBLIOGRAPHY

[92] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.1.
http://www.omg.org/spec/SysML/1.1/, 2008. [Accessed: January-2013].

[93] OMG. Object Constraint Language (OCL), Version 2.2. http://www.omg.org/
spec/OCL/2.2, 2010. [Accessed: January-2013].

[94] OMG. UML profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE), Version 1.1. http://www.omg.org/spec/MARTE/1.1/, 2011. [Accessed:
January-2013].

[95] OMG. MetaObject Facility (MOF), Version 2.4.2.
http://www.omg.org/spec/MOF/2.4.2/, 2014. [Accessed: January-2015].

[96] OMG. Precise Semantics of UML Composite Structures, Version 1.2. https://
www.omg.org/spec/PSCS/1.2, 2019. [Accessed: September-2019].

[97] OMG. Unified Component Model for Distributed, Real-Time And Embedded Sys-
tems, Version 1.1. https://www.omg.org/spec/UCM/1.1, 2019. [Accessed: April-
2019].

[98] C. on National Security Systems. National information assurance policy for space
systems used to support national security missions. cnss policy 12, committee on
national security systems, 2012.

[99] C. on National Security Systems. Security categorization and control selection for
national security systems. cnss instruction no. 1253, committee on national security
systems, 2014.

[100] A. Opdahl and G. Sindre. Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol., 51(5):916–932, 2009.

[101] A. L. Opdahl and G. Sindre. Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol., 51(5):916–932, 2009.

[102] Oracle. Javaspaces service specification. https://river.apache.org/
release-doc/current/specs/html/js-spec.html, 2005. [Accessed: April-2019].

[103] Oracle. Java message service. https://javaee.github.io/jms-spec/, 2015. [Ac-
cessed: April-2019].

[104] Oracle. Java remote method invocation specification. https://docs.oracle.com/
javase/9/docs/specs/rmi/index.html, 2017. [Accessed: April-2019].

177

http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/MARTE/1.1/
https://www.omg.org/spec/PSCS/1.2
https://www.omg.org/spec/PSCS/1.2
https://www.omg.org/spec/UCM/1.1
https://river.apache.org/release-doc/current/specs/html/js-spec.html
https://river.apache.org/release-doc/current/specs/html/js-spec.html
https://javaee.github.io/jms-spec/
https://docs.oracle.com/javase/9/docs/specs/rmi/index.html
https://docs.oracle.com/javase/9/docs/specs/rmi/index.html

BIBLIOGRAPHY

[105] OWASP. OWASP CLASP V.A.2. Technical report, Nov. 2007.

[106] OWASP. Application threat modeling. https://www.owasp.org/index.php/
Application_Threat_Modeling, 2017. [Accessed: December-2017].

[107] L. Paulson. Proving Properties of Security Protocols by Induction. Technical Report
409, Computer Laboratory, University of Cambridg, 1996.

[108] R. A. R and D. Dill. A Theory of Timed Automata. heoretical Computer Science,
12(6):183–235, 1994.

[109] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in embedded
systems: Design challenges. ACM Trans. Embed. Comput. Syst., 3(3):461–491,
2004.

[110] A. Richter, C. Herber, T. Wild, and A. Herkersdorf. Denial-of-service attacks on
PCI passthrough devices: Demonstrating the impact on network- and storage-I/O
performance. Journal of Systems Architecture, 61(10):592–599, 2015.

[111] R.N.Taylor and N. Medvidovic. Software architecture: Foundation, theory, and
practice. Wiley, 2010.

[112] M. Rodano and K. Giammarc. A Formal Method for Evaluation of a Modeled
System Architecture. Procedia Computer Science, 20:210–215, 2013.

[113] Q. Rouland, B. Hamid, J.-P. Bodeveix, and M. Filali. A formal methods approach
to security requirements specification and verification. In 2019 24th International
Conference on Engineering of Complex Computer Systems (ICECCS), pages 236–
241. IEEE, 2019.

[114] Q. Rouland, B. Hamid, and J. Jaskolka. Formalizing reusable communication mod-
els for distributed systems architecture. In International Conference on Model and
Data Engineering (MEDI), pages 198–216. Springer, 2018.

[115] Q. Rouland, B. Hamid, and J. Jaskolka. Formal specification and verification of
reusable communication models for distributed systems architecture. Future Gen-
eration Computer Systems, 108:178–197, 2020.

[116] Q. Rouland, B. Hamid, and J. Jaskolka. Reusable formal models for threat speci-
fication. In ICSR 2020: Reuse in Emerging Software Engineering Practices, pages
52–68. Springer, 2020.

178

https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling

BIBLIOGRAPHY

[117] Q. Rouland, B. Hamid, and J. Jaskolka. Specification, detection, and treatment
of stride threats for software components: Modeling, formal methods, and tool
support. Journal of Systems Architecture, 2021.

[118] W. W. Royce. Managing the development of large software systems: concepts
and techniques. In Proceedings of the 9th international conference on Software
Engineering, pages 328–338. IEEE Computer Society Press, 1987.

[119] N. Rozanski and E. Woods. Software Systems Architecture. Addison Wesley, 2
edition, 2011.

[120] SAE. Architecture Analysis & Design Language (AADL). http://www.sae.org/
technical/standards/AS5506A, 2009. [Accessed: January-2011].

[121] D. Schmidt. Model-Driven Engineering. in IEEE computer, 39(2):41–47, 2006.

[122] M. Schumacher. Security Engineering with Patterns - Origins, Theoretical Models,
and New Applications, volume 2754 of Lecture Notes in Computer Science. Springer,
ISBN 978-3-540-45180-8, 2003.

[123] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–
25, 2003.

[124] D. Sgandurra, E. Karafili, and E. Lupu. Formalizing threat models for virtualized
systems. In S. Ranise and V. Swarup, editors, Proceedings of Data and Applications
Security and Privacy XXX, volume 9766 of Lecture Notes in Computer Science,
pages 251–267. Springer International Publishing, 2016.

[125] M. Shin, H. Gomaa, and D. Pathirage. A software product line approach for feature
modeling and design of secure connectors. In Proceedings of the 13th International
Conference on Software Technologies, ICSOFT 2018, pages 506–517, 2018.

[126] G. Sindre and A. L. Opdahl. Eliciting security requirements by misuse cases. In 37th
International Conference on Technology of Object-Oriented Languages and Systems,
2000. TOOLS-Pacific 2000. Proceedings, pages 120–131, 2000.

[127] I. Šljivo, G. J. Uriagereka, S. Puri, and B. Gallina. Guiding assurance of archi-
tectural design patterns for critical applications. Journal of Systems Architecture,
110:101765, 2020.

[128] R. M. Smullyan. First-order logic. Courier Corporation, 1995.

179

http://www.sae.org/technical/standards/AS5506A
http://www.sae.org/technical/standards/AS5506A

BIBLIOGRAPHY

[129] J. Spivey. The Z notation. Prentice-Hall, 1989.

[130] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[131] C. Szyperski. Component Software: Beyond Object-oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[132] B. Tan, M. Biglari-Abhari, and Z. Salcic. Towards decentralized system-level se-
curity for MPSoC-based embedded applications. Journal of Systems Architecture,
80:41–55, 2017.

[133] M. Torngren, D. Chen, and I. Crnkovic. Component-based vs. model-based devel-
opment: a comparison in the context of vehicular embedded systems. In 31st EU-
ROMICRO Conference on Software Engineering and Advanced Applications, pages
432–440, 2005.

[134] H. Van Ditmarsch, W. van Der Hoek, and B. Kooi. Dynamic epistemic logic, volume
337. Springer Science & Business Media, 2007.

[135] J. Viega. Building Security Requirements with CLASP. In Proceedings of the
2005 Workshop on Software Engineering for Secure Systems—Building Trustworthy
Applications, SESS ’05, pages 1–7. ACM, 2005.

[136] L. Vogel. Eclipse RCP. http://www.vogella.de/articles/EclipseRCP/, 2015.
[Accessed: August-2016].

[137] G. H. Von Wright. Deontic logic. Mind, 60(237):1–15, 1951.

[138] F. Wagner. Modeling software with finite state machines: a practical approach.
Auerbach Publications, 2006.

[139] M. Wazid, A. K. Das, R. Hussain, G. Succi, and J. J. Rodrigues. Authentication
in cloud-driven IoT-based big data environment: Survey and outlook. Journal of
Systems Architecture, 97:185–196, 2019.

[140] J. M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–22,
1990.

[141] R. Zurawski. Embedded Systems in Industrial Applications - Challenges and Trends.
In International Symposium on Industrial Embedded Systems (SIES). IEEE, 2007.

180

http://www.vogella.de/articles/EclipseRCP/

Appendices

181

Appendix A

Architecture : Additional
communication paradigms RPC &
DSM

A.1 Scenario view

A.1.1 Communication behavior semantics

A.1.1.1 Remote procedure call

In the typical remote procedure call (RPC) communication style [23], a channel is used
for sending invocation (request) messages from a client to a server and for receiving
acknowledgement (reply) messages from a server to a client. The communication channel
is modeled as a queue of fixed length for both request and reply messages from a client
and a server respectively. Note that RPC is a special case of the general message passing
model.

Figure A.1 shows the states of a client for sending invocation messages and receiving
reply messages. It is shown that if the state for send is sending and the buffer is not full,
it changes its state from 0 (invocation sent) to 1 for waiting for a reply. On the other
hand, if the state is sending and the buffer is full, it remains at state 0. It is also shown
that if the state is 1 (waiting to receive a reply) and the reply is in the buffer, it changes
its state from 1 to 2 for receiving a reply. Otherwise, if the reply is not yet in the buffer,
it remains at state 1. On the other hand, if the state is receiving and the reply is not in
the buffer, it changes its state from 2 to 0.

Figure A.2 shows the states of a connector for pushing and pulling invocation and

183

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

0

1

2

send,∼ (#buf = max)

send, #buf = max

receiveReply, reply in buf

receiveReply,∼ reply in buf

∼ reply in buf

Figure A.1: States of a client for invocation/receiving reply messages

reply messages. It is shown that if the state is 0 (waiting to receive from the caller) and
a push of an invocation occurred, it changes its state from 0 to 1. The connector stays in
the state 1 (retrieving an invocation to the receiver) until a pull of an invocation which
changes its state from 1 to 2 for waiting for a reply. Figure A.2 also shows also that the
connector remains in this new state until a push of a reply occurs then it changes its state
from 2 to 3 indicating that it is receiving a reply. Finally, it changes its state from 3 to 0
if a pull of a reply occurred.

0 1 2 3

push inv pull inv push rep

pull rep

Figure A.2: States of a RPC connector

Figure A.3 shows the states of a server for receiving invocation and sending reply
messages. It is shown that if the state is waiting to receive an invocation and an
event receiveInvocation occurs in the case that an invocation is present in the buffer
it changes it state from 0 to 1. Otherwise, if the invocation is absent it remains in the
same state. It also shows that after the execution of an event reply, if the buffer is not full
it changes its state from 1 to 2. Otherwise, if the buffer is full it stays in state 1. Finally,
from state 2 it returns to state 0 when a reply is in the buffer.

184

A.1. SCENARIO VIEW

0

1

2

receiveInvocation, inv in buf

receiveInvocation,∼ inv in buf

reply,∼ (#buf = max)

reply, #buf = max

reply in buf

Figure A.3: States of a server for receiving invocation/sending reply message

A.1.1.2 Distributed shared memory

In the distributed shared memory (DSM) communication style, a Central Memory Man-
ager keeps the state of the different shared variables and uses an RPC communication
model invocation to access (write/read operation) these variables through invocation (re-
quest) from a client. The Central Memory Manager reply is either the variable value in
the case of a read operation or an acknowledgement in the case of a write operation. So,
we can see DSM as an abstraction of the RPC model, hiding the complexity to access
shared variables. Note that this means there no need to define a new connector for the
DSM communication style, but only to define specific behavior and operations for the
clients and the Central Memory Manager (server) on top of RPC.

Figure A.4 shows the states of a client for writing and reading a shared variable. It
shows that if the client is waiting to read or write a variable value, a state change can hap-
pen either when a read invocation occurred and the buffer is not full or a write invocation
occurred and the buffer is not full. In the case of a read invocation, its state changes from 0
(invocation sent) to 1, indicating that it is waiting for a reply that contains the variable
value. Otherwise, in the case of a write invocation, its state changes from 0 (invocation
sent) to 2, indicating that it is waiting for a reply that contains an acknowledgement that
the change of value for the variable is effective in the Central Memory Manager. On the
other hand, if the state is sending and the buffer is full, its state remains at 0. It is also
shown that if the state is 1 (waiting to receive a reply that contains the variable value)
and the reply is in the buffer, it changes its state from 1 to 3 for receiving this reply.
Otherwise, if the reply is not yet in the buffer, it remains at state 1. In a similar way, if

185

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

0

1

2

3

read,∼ (#buf = max)
read, #buf = max

write,∼ (#buf = max)
read, #buf = max

receiveVar ,∼ reply in buf

receiveVar , reply in buf

receiveAck, reply in buf

receiveAck,∼ reply in buf

∼ reply in buf

Figure A.4: States of a client for writing and reading a shared variable

the state is 2 (waiting to receive a reply that contains the acknowledgement of the success
of the write operation) and the reply is in the buffer, it changes its state from 2 to 3 for
receiving this reply. If the reply is not yet in the buffer, it remains at state 2. Finally, if
the state is receiving and the reply is not in the buffer, it changes its state from 3 to 0.

Figure A.5 shows the states of the Central Memory Manager (server) for receiv-
ing write/read calls and sending the according reply messages. It is shown that if the
Central Memory Manager is waiting to receive a read or write invocation, and if an
event receiveRead occurs when an invocation is present in the buffer, it changes it state
from 0 to 1. Otherwise, if an event receiveWrite occurs when an invocation is present in
the buffer, it changes its state from 0 to 2. On the other hand, if either a read or write
invocation is absent, it remains in the same state 0. It is also shown that if the Central
Memory Manager is handling a write invocation and it updates the memory according to
corresponding write invocation, it changes its state from 2 to 3. We can observe that the
transition from 1 to 4 occurs when the Central Memory Manager is sending the reply to
a read operation and the buffer is not full. In a similar way, the transition from state 3
to 4 occurs when the Central Memory Manager is sending the reply to a write operation
and the buffer is not full. In either case, if its state is 1 or 3, and the buffer is not full, its
state remains unchanged. Finally, from state 3 the Central Memory Manager returns to
state 0 when a reply is not in the buffer.

186

A.1. SCENARIO VIEW

0

1

2 3

4

receiveRead, inv in buf

receiveWrite, inv in buf

receiveRead,∼ inv in buf

receiveWrite,∼ inv in buf

updateMem replyAck,∼ (#buf = max)

replyAck, #buf = max

replyVar ,∼ (#buf = max)

replyVar , #buf = max

∼ reply in buf

Figure A.5: States of the Central Memory Manager (server) receiving reading/writing
calls and returning the corresponding reply messages

A.1.2 Communication paradigms properties specification

A.1.2.1 Remote procedure call

Once the caller c1 sends an invocation to callee c2, the caller eventually receives an
acknowledgement from that callee.

Hc1(call(c2, m, args in, args out)) ⇝ Hc1(executeReply(c2, m, args in, args out))
(A.1)

Once the caller c1 receives results corresponding to an invocation of a method m at a
certain server c2 and the caller c1 starts the next invocation of the same method at the
same server, the callee c1 is eventually executing that invocation.

(Hc2(reply(c1, m, args in1, args out2)) < Hc1(call(c2, m, args in2, args out2)))
⇝ Hc1(executeReply(c2, m, args in, args out))

(A.2)

A.1.2.2 Distributed shared memory

Once a caller c reads from shared variable var , eventually it gets a value value for var .

187

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

∀ c ∈ C, d ∈ D, typ ∈ T · Hc(read(var, typ)) ⇝ Hc(executeRead(var, value)) (A.3)

Once a caller c writes a value value in shared variable var, eventually it gets an
acknowledgement that the operation is successful.

∀ c ∈ C, d ∈ D, typ ∈ T · Hc(write(var, typ)) ⇝ Hc(executeWrite(var, value)) (A.4)

Once a caller c1 writes a value value in a shared variable var and no others client c3
writes any new value value′ in var, eventually a client c2 getting value by reading var .

(Hc1(executeWrite(var, value)) ∧
¬(Hc3(executeWrite(var, value)) < Hc2(executeRead(var, value)))
⇒ Hc2(executeRead(var, value))

(A.5)

Example of communication properties specification. In the example of the col-
lege library web application described in Section 2.8.1, we can identify the corresponding
communication semantics that will need to be used in order to fulfill the desired require-
ments:

• Req 1. The remote procedure call communication style allows us to express Req 1.
As identified in Section 4.5, two components (Browser and Website) and a connector
are in play in this requirement. To satisfy the requirement, the Browser must
respect the semantics of an RPC client as described in Figure A.1 and the Website
must respect the semantics of an RPC server as described in Figure A.3. Finally,
the connector must respect the semantics of an RPC connector as described in
Figure A.2.

• Req 3. The distributed shared memory communication style allows us to express
Req 3. As identified in Section 4.5, two components (Terminal and Database) and
a connector have roles in satisfying this requirement. The Terminal must respect
the semantics of a DSM client as described in Figure A.4 and the Website must
respect the semantics of a DSM server (Central Memory Manager) as described in
Figure A.5. Finally, the connector must respect the semantics of an RPC connector
as described in Figure A.2.

188

A.2. META-MODEL

A.2 Meta-Model

A.2.1 Formalizing the software architecture metamodel

(a) “For two components c1 and c2 to interact using invocation, each must uses a port
that realizes the correct Interface offering the same Method m”

1 pred invocation_type_check [c1 ,c2:Component , m: Method] {
2 all i: Invocation |
3 i. invocation_of = m and c1 = i. client and c2 = i. server =>
4 some p1:c1.uses , p2:c2.uses {
5 p1. realizes . methods = m
6 p2. realizes . methods = m
7 p1. realizes .kind = PROVIDED
8 p2. realizes .kind = REQUIRED
9 }

10 }

The Alloy Analyzer shows that properties (a) hold.

A.2.2 Formalizing and verifying connectors and their properties

A.2.2.1 Remote procedure call

As with the message passing connectors, the RPC connector is also defined as a buffer of
invocation (request) messages or acknowledgement (reply) messages. Listing A.1 shows
an excerpt of the formalization of the RPC connector. As described in Section A.1.1.1,
invocation (request) messages are sent from a client to a server and acknowledgement
(reply) messages are received by a client from a server. Associated with these invocations
are push and pull operations which support the high-level communication primitives. For
example, when the client component makes a remote procedure call, an invocation is
buffered in the connector (line 17). When the server component executes the procedure
call, the Invocation is removed from the connector (line 21). A similar definition is
provided when the server component acknowledges the execution of a procedure call with
a reply that is received by the client component (lines 25 and 29). A fact called traces is
defined to ensure the state transitions of the RPC connector form only valid executable
traces (lines 32 to 36).

1 sig ConnectorRPC extends Channel {
2 buffer : Invocation lone -> Tick
3 }

189

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

4 pred RPC_Init [t: Tick] {
5 all c: ConnectorRPC | c. buffer .t = none
6 }
7 pred RPC_push [t, t’: Tick , c: ConnectorRPC , i: Invocation] {
8 c. buffer .t = none
9 c. buffer .t’ = i

10 }
11 pred RPC_pull [t, t’: Tick , c: ConnectorRPC , i: Invocation] {
12 c. buffer .t = i
13 c. buffer .t’ = none
14 }
15 pred RPC_pushInvocation [t, t’: Tick , c: ConnectorRPC , i: Invocation] {
16 #c. buffer .t. arguments_reply .t = 0
17 RPC_push [t,t’,c,i]
18 }
19 pred RPC_pullInvocation [t, t’: Tick , c: ConnectorRPC , i: Invocation] {
20 #c. buffer .t. arguments_reply .t = 0
21 RPC_pull [t,t’,c,i]
22 }
23 pred RPC_pushReply [t, t’: Tick , c: ConnectorRPC , r: Invocation] {
24 c. buffer .t. arguments_reply .t’ != 0
25 RPC_push [t,t’,c,r]
26 }
27 pred RPC_pullReply [t, t’: Tick , c: ConnectorRPC , r: Invocation] {
28 #c. buffer .t. arguments_reply .t != 0
29 RPC_pull [t,t’,c,r]
30 }
31 fact traces {
32 RPC_Init [TO/first]
33 all t:Tick - TO/last | let t’ = TO/next[t] |
34 some c: ConnectorRPC , i:Invocation , r: Invocation
35 | RPC_pushInvocation [t, t’, c, i] iff not RPC_pullInvocation [t, t’,

c, i]
36 iff not RPC_pushReply [t, t’, c, r] iff not RPC_pullReply [t, t’, c, r

]
37 }

Listing A.1: Remote procedure call connector

Communication in the remote procedure call communication style is performed using
the call(), executeCall(), reply() and executeReply() primitives. As depicted in List-
ing A.2, the call() primitive executed at the caller component (line 5) requires the name
of the callee component providing the invoked method, the method being invoked, and

190

A.2. META-MODEL

the associated arguments as parameters. The executeCall() primitive (line 17) requires
the name of the anticipated caller component, the corresponding invoked method, and
its input and output arguments. The reply() primitive (line 30) requires the name of the
anticipated caller component, the corresponding invoked method, and its result param-
eters. The executeReply() primitive (line 43) requires the name of the anticipated callee
component, the corresponding invoked method, and its result parameters.

The semantics of RPC in distributed systems are the same as those of a local pro-
cedure call in non-distributed systems: The caller component calls and passes input ar-
guments to the remote procedure and it blocks at the call(callee, method, input, result)
while the remote procedure executes (executeCall(caller , method, input, result)). When
the remote procedure completes, the callee component can return result parameters to
the calling component (reply(caller , method, result)) and the caller becomes unblocked
and continues its execution (executeReply(callee, method, result)). As a prerequisite, we
added the check type interaction interface predicate (lines 2 to 3) to ensure that opera-
tions are present at the sending and receiving components before an invocation is executed.
Without interface type checking, the presence of the invoked operation is only verified at
execution time.

1 pred check_type_interaction_interface [i: Invocation]{
2 one if:Interface , p:i. client .uses | if in p. realizes and if.kind =

REQUIRED and i. invocation_of in if. methods
3 one if:Interface , p:i. server .uses | if in p. realizes and if.kind =

PROVIDED and i. invocation_of in if. methods
4 }
5 pred Component . H_call [callee :Component , meth: Method , in: set Argument ,

out:set Argument , t:Tick]{
6 some i : Invocation {
7 i. client = this
8 i. server = callee
9 i. invocation_of = meth

10 i. arguments_call = in
11 #i. arguments_reply .t = 0
12 check_type_interaction_interface [i]
13 one t’:t.next | let c = { c: ConnectorRPC | c.portO in i. client .uses
14 and c.portI in i. receiver .uses} | RPC_pushInvocation [t,t’,c,i]
15 }
16 }
17 pred Component . H_executeCall [caller :Component , meth: Method , in: set

Argument , out:set Argument , t:Tick] {
18 some i : Invocation {
19 i. client = caller

191

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

20 i. server = this
21 i. invocation_of = meth
22 i. arguments_call = in
23 #i. arguments_reply .t = 0
24 check_type_interaction_interface [i]
25 one t’:t.next | let c = { c: ConnectorRPC | c.portO in i. client .uses
26 and c.portI in i. server .uses}
27 | RPC_pullInvocation [t,t’,c,i] and c. buffer .t’. arguments_reply .t’ =

args_out
28 }
29 }
30 pred Component . H_reply [caller :Component , meth: Method , out: setArgument ,

t:Tick] {
31 some r : Invocation {
32 r. client = caller
33 r. server = this
34 i. invocation_of = meth
35 i. arguments_call = in
36 i. arguments_reply = out
37 check_type_interaction_interface [i]
38 one t’:t.next | let c = { c: ConnectorRPC | c.portO in r. client .uses
39 and c.portI in r. server .uses}
40 | RPC_pushReply [t,t’,c,r]
41 }
42 }
43 pred Component . H_executeReply [callee :Component , meth: Method , in: set

Argument ,out:set Argument , t:Tick] {
44 some r : Invocation {
45 r. client = this
46 r. server = callee
47 i. invocation_of = meth
48 i. arguments_call = in
49 i. arguments_reply = out
50 check_type_interaction_interface [i]
51 one t’:t.next | let c = { c: ConnectorRPC | c.portO in r. client .uses
52 and c.portI in r. server .uses}
53 | RPC_pullReply [t,t’,c,r]
54 }
55 }

Listing A.2: Remote procedure call communication

Among the set of possible and specified characteristics of the behaviors of the remote
procedure call communication style, a subset of them are encoded in terms of properties

192

A.2. META-MODEL

as predicates and assertions and the results of their verification are stated below.

(a) “Once the caller c1 sends an invocation to callee c2, the caller eventually receives an
acknowledgement from that callee.”

1 pred send_is_eventually_replied [c1 ,c2:Component , m:Method , args_in ,
args_out : Argument] {

2 one t:Tick | one t’:t.nexts |
3 c1. H_call [c2 ,m,args_in ,args_out ,t] => c1. H_executeReply [c2 ,m,

args_in ,args_out ,t’]
4 }

(b) “Once the caller c1 receives results corresponding to an invocation of a method m at
a certain server c2 and the caller c1 starts the next invocation of the same method at
the same server, the callee c1 is eventually executing that invocation.”

1 pred reply_and_call_is_eventually_received [c1 ,c2:Component , m:Method
, args_in , args_out : Argument] {

2 one t:Tick | one t’:t.nexts | one t’’:t’. next |
3 c2. H_reply [c1 ,m,args_in1 ,args_out1 ,t] and c1. H_call [c2 ,m,

args_in2 ,args_out2 ,t’] =>
4 c2. H_executeCall [c1 ,m,args_in2 ,args_out2 ,t’’]
5 }

The Alloy Analyzer shows that both properties (a) and (b) hold for an RPC connector.

A.2.2.2 Distributed shared memory

The DSM connector is defined as an extension of the RPC connector described in Sec-
tion A.2.2.1. Conforming to the behavioral semantics specified in Section A.1.1.2, this
extension further specifies the invocation methods to be specifically read or write opera-
tions. Listing A.3 shows the formalization of the DSM connector as an extension of the
RPC connector.

1 sig ConnectorSM extends ConnectorRPC {} {
2 all t:Tick , i: Invocation | i in buffer .t => i. invocation_of in Read +

Write
3 }

Listing A.3: Distributed shared memory connector

193

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

Communication in the distributed shared memory style is performed using the read(),
executeRead(), write() and executeWrite() primitives. As depicted in Listing A.4, the
write() primitive (line 55) requires the identification of the variable that the caller want
to access and the value it wants to assign to this variable. The executeWrite() prim-
itive (line 58) requires the name of the anticipated new value of the variable and the
corresponding identification of this variable. The read() primitive (line 61) executed at
the caller component requires the name of the identification of the variable that the caller
want to access. The executeRead() primitive (line 64) requires the value of the anticipated
variable being read and the corresponding identification of this variable.

As the proposed distributed shared memory style is based on RPC, the semantics is
related to the same mechanism: The caller component calls the write or read operation
and passes input arguments and execute a remote procedure call to Central Memory
Manager. It blocks at the read(variable) / write(variable, value) while the remote pro-
cedure executes on the Central Memory Manager (receiveRead(caller , variable, value) /
receiveWrite(caller , variable, value)). When the remote procedure completes, the callee
(Central Memory Manager) can return result parameters to the calling component
(replyVar(caller , variable, value) / replyAck(caller , variable, value)) and the caller becomes
unblocked and continues its execution (executeRead(variable, value) / executeWrite(
variable, value)).

1 abstract one sig CentralMemoryManager extends Component {
2 mem: Res -> Tick
3 }{
4 all t:Tick | no disj r,r’: Res | r in mem.t and r’ in mem.t and some r

. variable & r’. variable
5 }
6 sig Res {
7 variable : Var ,
8 value:Value
9 }

10 sig Read extends Method {}
11 sig Write extends Method {}
12 sig Var extends Argument {}
13 sig Value extends Argument {}
14 sig ACK extends Argument {}
15 fact traces {
16 CentralMemoryManager .init[TO/first]
17 all t:Tick - TO/last | let t’ = TO/next[t] |
18 some c:Component , var:Var , value:Value
19 | CentralMemoryManager . receiveWrite [t,t’,c,var ,value]

194

A.2. META-MODEL

20 iff not CentralMemoryManager . receiveRead [t, t’,c,var ,value]
21 iff not CentralMemoryManager . updateMem [t, t’,c,var ,value]
22 iff not CentralMemoryManager . replyVar [t, t’,c,var ,value]
23 iff not CentralMemoryManager . replyAck [t, t’,c,var ,value]
24 iff not CentralMemoryManager . keepMemState [t,t’]
25 }
26 pred CentralMemoryManager .init[t:Tick] {
27 #this.mem.t = 0
28 }
29 pred CentralMemoryManager . receiveWrite [t,t’:Tick , c:Component , var:Var ,

value:Value] {
30 this. executeCall [c, Write , var + value , ACK , t]
31 this. keepMemState [t,t’]
32 this. updateMem [t’,t’.next ,c,var ,value]
33 }
34 pred CentralMemoryManager . updateMem [t,t’:Tick , c:Component , var:Var ,

val:Value] {
35 one r:Res | r. variable = var and r.value = val and this.mem.t’ = this

.mem.t + r
36 this. replyAck [t’,t’.next ,c,var ,val]
37 }
38 pred CentralMemoryManager . replyAck [t,t’:Tick , c:Component , var:Var , val:

Value] {
39 this.reply[c, Write , var + val , ACK , t]
40 this. keepMemState [t,t’]
41 }
42 pred CentralMemoryManager . receiveRead [t,t’:Tick , c:Component , var:Var ,

val:Value] {
43 this. executeCall [c, Read , var , val , t]
44 one r:Res | r in this.mem.t and r. variable = var and r.value = val
45 this. replyVar [t’,t’.next ,c,var ,val]
46 this. keepMemState [t,t’]
47 }
48 pred CentralMemoryManager . replyVar [t,t’:Tick , c:Component , var:Var , val

:Value] {
49 this.reply[c, Write , var , val , t]
50 this. keepMemState [t,t’]
51 }
52 pred CentralMemoryManager . keepMemState [t,t’: Tick] {
53 this.mem.t = this.mem.t’
54 }
55 pred Component . H_write [var:Var , val:Value , t:Tick] {
56 this.call[CentralMemoryManager , Write , var + val , ACK , t]

195

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

57 }
58 pred Component . H_executeWrite [var:Var , val:Value , t:Tick] {
59 this. executeReply [CentralMemoryManager , Write , var + val , ACK , t]
60 }
61 pred Component . H_read [var:Var , t:Tick] {
62 this.call[CentralMemoryManager , Read , var , ACK , t]
63 }
64 pred Component . H_executeRead [var:Var , val:Value , t:Tick] {
65 this. executeReply [CentralMemoryManager , Read , var , val , t]
66 }

Listing A.4: Distributed shared memory

Among the set of possible and specified characteristics of the behaviors of the dis-
tributed shared memory communication style, a subset of them are encoded in terms
of properties as predicates and assertions and the results of their verification are stated
below.

(a) “Once a caller c reads from shared variable var , eventually it gets a value value
for var .”

1 pred starvation_freeness_read [c:Component , var:Var , value:Value] {
2 some t:Tick , t’:t.nexts |
3 c. H_read [var , t] => c. H_executeRead [var , value , t’]
4 }

(b) “Once a caller c writes a value value in shared variable var, eventually it gets an
acknowledgement that the operation is successful.”

1 pred starvation_freeness_write [c:Component , var:Var , value:Value] {
2 all t:Tick , t’:t.nexts |
3 c. H_write [var , value , t] => c. H_executeWrite [var , value , t’]
4 }

(c) “Once a caller c1 writes a value value in a shared variable var and no others client c3
writes any new value value′ in var, eventually a client c2 getting value by reading var .”

1 pred eventual_consistency [c1 ,c2:Component , var:Var , value:Value {
2 some t:Tick , t’:t.nexts |
3 all c3:Component , t’’:t.nexts , value ’: Value |
4 c1. executeWrite [var , value , t]
5 and not c3. executeWrite [var ,value ’,t’’]
6 => c2. executeRead [var , value , t’]
7 }

196

A.2. META-MODEL

The Alloy Analyzer shows that properties (a), (b) and (c) hold for a DSM communi-
cation style.

A.2.3 Building the concrete architecture for the illustrative ex-
ample

Model the software architecture The software architecture model is defined as an
instance of the proposed metamodel with respect to the functional requirements as iden-
tified in Section 4.5. Listing A.5 depicts the Alloy specification of the architecture of
the college library web application example described in Figure 2.8. For instance, the
Browser can be seen as an instantiation of the Component type. We proceed by defining
the component types (lines 1 to 4), ports (lines 6 to 11), and interfaces (lines 13 to 18)
as simple extensions to the concepts of our software architecture metamodel.

1 one sig Browser extends Component {}{ uses = PortInterfaceBrowser }
2 one sig Website extends Component {}{ uses = PortInterfaceWebsite +

PortDataWebsite }
3 one sig Database extends CentralMemoryManager {}{ uses =

PortDataDatabase + PortSMDatabase }
4 one sig Terminal extends Component {}{ uses = PortSMTerminal }
5
6 one sig PortInterfaceBrowser extends Port {}{ realizes =

InterfaceBrowser }
7 one sig PortInterfaceWebsite extends Port {}{ realizes =

InterfaceWebsite }
8 one sig PortDataWebsite extends Port {}{ realizes = DataWebsite }
9 one sig PortDataDatabase extends Port {}{ realizes = DataDatabase }

10 one sig PortSMDatabase extends Port {}{ realizes =
InterfaceSMDataDatabase }

11 one sig PortSMTerminal extends Port {}{ realizes =
InterfaceSMAdminstrator }

12
13 one sig InterfaceBrowser extends Interface {}{k ind = REQUIRED and

getBook in methods }
14 one sig InterfaceWebsite extends Interface {}{ kind = PROVIDED and

getBook in methods }
15 one sig getBook extends Method {}{ idBook in parameters }
16 one sig idBook extends Parameter {}{ direction = IN }
17 one sig InterfaceSMAdminstrator extends Interface {}{ kind = REQUIRED

and Write in methods }
18 one sig InterfaceSMDataDatabase extends Interface {}{ kind = PROVIDED

and Write + Read in methods }

197

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

19
20 one sig DataWebsite extends Data {}{ kind = DATA_IN }
21 one sig DataDatabase extends Data {}{ kind = DATA_OUT }
22 one sig DatabaseContent extends DataType {}

Listing A.5: Building a concrete software architecture of the college library web
application example in Alloy

Incorporate connectors At this step, connectors are integrated by reusing the de-
veloped and verified connector libraries. In the same way as the metamodel, connectors
are instantiated in the concrete architecture by simply defining connector types as ex-
tensions of one of the defined connectors. Listing A.6 depicts the Alloy specification of
connectors for the college library web application example described in Section 2.8. The
corresponding connector communication style is chosen as identified in Section 4.6.3.

1 one sig BrowerWebsiteConnector extends ConnectorRPC {}{
2 portO = PortInterfaceBrowser
3 portI = PortInterfaceWebsite
4 }
5 one sig DatabaseWebsiteConnector extends ConnectorMPS {}{
6 portO = PortDataDatabase
7 portI = PortDataWebsite
8 }
9 one sig TerminalDatabaseConnectorSM extends ConnectorSM {}{

10 portO = PortSMTerminal
11 portI = PortSMDatabase
12 }

Listing A.6: Instantiate Connectors of a web application example in Alloy

Verify functional requirements

• Req 1. we reuse some of the previously specified and verified structural and com-
munication behavior properties, this time for remote procedure calls, to specify
and verify the application specific functional requirement Req 2 on the concrete
architecture. Listing A.7 shows the Alloy specification of this functional require-
ment as a predicate combining the verified properties invocation type check (line
3) and send is eventually replied (line 4) . These properties are applied to the
specific concepts and behaviors identified for this requirement as described in Sec-
tion 4.5 and 4.6.3. The Alloy Analyzer shows that Req 2 holds.

198

A.2. META-MODEL

1 pred Req_2{
2 some w:Website , b:Browser , m:getBook , args_in , args_out : set

Argument {
3 invocation_type_check [w,b,m]
4 send_is_eventually_replied [w,b,m,args_in , args_out]
5 }
6 }

Listing A.7: Using previously verified RPC properties to specify a functional requirement
of a web application example in Alloy

• Req 2. Similar to Req 1, we use some of the previously specified and verified struc-
tural and communication behavior properties for message passing to specify and
verify the application specific functional requirement Req 2 on the concrete ar-
chitecture. Listing A.8 depicts the Alloy specification of this functional require-
ment as a predicate combining the verified properties msgpassing type check (line
3) and send is eventually received (line 4). These properties are applied to the
specific concepts and behaviors identified for this requirement as discussed in Sec-
tion 4.5 and 4.6.3. The Alloy Analyzer shows that Req 1 holds.

1 pred Req_1 {
2 some w:Website , d:Database , m:Message , typ: DataType {
3 msgpassing_type_check [d,w,typ]
4 send_is_eventually_received [d,w,m,typ]
5 }
6 }

Listing A.8: Using previously verified MPS properties to specify functional requirement
of a web application example in Alloy

• Req 3. Once again, we reuse some of the previously specified and verified struc-
tural and communication behavior properties, now for distributed shared memory,
to specify and verify the application specific functional requirement Req 3 on the
concrete architecture. Listing A.7 gives the Alloy specification of this functional
requirement as a predicate combining the verified properties invocation type check
(line 3) and starvation freeness write (line 4). As with requirements Req 1 and
Req 2, these properties are applied to the specific concepts and behaviors identified
for this requirement discussed in Section 4.5 and 4.6.3. The Alloy Analyzer shows
that Req 3 holds.

199

APPENDIX A. ARCHITECTURE : ADDITIONAL COMMUNICATION
PARADIGMS RPC & DSM

1 pred Req_3 {
2 some a: Administrator , d:Database , var:Var , val:Value {
3 invocation_type_check [a,d,Write]
4 starvation_freeness_write [a,var ,val]
5 }
6 }

Listing A.9: Using previously verified DSM properties to specify a functional requirement
of a web application example in Alloy

200

Appendix B

Coq confidentiality

B.1 Introduction to Coq tatics

In this section, we introduce the tactics used in the proof presented Section B.2.

Intros / intro Introduces variables appearing with forall as well as the premises (left-
hand side) of implications.
If the goal contains universally quantifiable variables (i.e., forall : intros), we can use
the intros tactic to incorporate those variables into the context. All hypotheses on the
left side of an implication can alternatively be introduced as assumptions using intros. If
intros is used alone, Coq will introduce all of the variables and hypotheses it can and
will name them automatically. By supplying the names in order, we can offer your own
names. There is a sister tactic intro that only introduces one thing.

For example, if we try to prove the following modus tollens theorem:

(P ∧ Q)→ P

We can start by introducing the variables, as well as the hypotheses, using intro.
Then, we obtain the following hypothesis:

• P implies Q : P → Q

• not Q: ¬Q

Listing B.1 show the corresponding Coq for this example.
1 Theorem modus tollens : ∀ (P Q : Prop),
2 (P → Q) → ¬Q → ¬P.

201

APPENDIX B. COQ CONFIDENTIALITY

3 Proof.
4 intros P Q P implies Q not Q.

Listing B.1: Coq tatic intro

Unfold Unfolds the definitions of terms.
The unfold tactic replaces a defined term with its definition. You may also use unfold on
a hypothesis with the syntax unfold <term> in <hypothesis>.

For example, if we try to prove the following simple decrement theorem:

decrement 220 = 219

With decrement(x) defined as :
x − 1

Then, using the unfold tactic we obtain by replacing the defined term decrement by
is definition:

220 − 1 = 219

Listing B.2 show the corresponding Coq for this example.
1 Definition decrement (x : nat) : nat :=
2 x − 1.
3
4 Theorem simple decrement :
5 decrement 220 = 219.
6 Proof.
7 unfold decrement.

Listing B.2: Coq tatic unfold

Apply Uses implications to transform goals and hypotheses.
If you have some hypothesis that states that A holds, as well as another hypothesis A → B,
you can use apply to transform the first hypothesis into B. The syntax is apply <term>

in <hypothesis> or apply <term> in <hypothesis> as <new−hypothesis>.
For example, if try to prove the following modus ponens theorem:

(P → Q)→ P → Q.

We can start by introducing the variables, as well as the hypotheses, using intro.
Then, the following hypothesis:

• P implies Q : P → Q

202

B.1. INTRODUCTION TO COQ TATICS

• P holds: P

Therefore, we notice that P holds, and because we know that P → Q, we can use the
apply tactic to apply the implication P implies Q in our hypothesis P holds to transform
it. This way we obtain the new hypothesis Q holds :

Q

Listing B.3 show the corresponding Coq for this example.
1 Theorem modus ponens : ∀ (P Q : Prop),
2 (P → Q) → P → Q.
3 Proof.
4 intros P Q P implies Q P holds.
5 apply P implies Q in P holds as Q holds.

Listing B.3: Coq tatic apply

Destruct (And) Replaces a hypothesis P / Q with two hypotheses P and Q
A hypothesis P ∧ Q means that both A and B hold, hence it can be deconstructed into
two new hypotheses P and Q. You can also use the destruct ...as [... | ...] syntax to
give these new hypotheses a unique name.

For example, given a starting hypothesis P and Q:

P ∧ Q

Using the destruct tactic allows us to obtain two new hypotheses:

• P holds : P

• Q holds : Q

Listing B.4 show the corresponding Coq for this example.
1 Theorem and left : ∀ (P Q : Prop),
2 (P ∧ Q) → P.
3 Proof.
4 intros P Q P and Q.
5 destruct P and Q as [P holds Q holds].

Listing B.4: Coq tatic destruct (and)

Specialize Instantiated by concrete terms the premises of this hypothesis
This tactic works on local hypothesis. The premises of this hypothesis (either universal
quantifications or non-dependent implications) are instantiated by concrete terms.

203

APPENDIX B. COQ CONFIDENTIALITY

For example, if we have the following hypothesis H :

A → B

And hypothesis a :
A

We can use the specialize tactic to specialize H for a. We obtain this way the new
hypothesis:

B

Listing B.5 show the corresponding Coq for this example.
1 Theorem specialize {A B: Type} (H: A → B) (a: A): B.
2 Proof.
3 specialize (H a).

Listing B.5: Coq specialize simpl

Generalize Generalizes the conclusion with respect to some term.
For example, if we have the following hypothesis :

0 <= x + y + y

Using the generalize tactic we can generalize it as :

∀ n : nat, 0 <= n.

Listing B.6 show the corresponding Coq for this example.
1 Theorem T x y:
2 0 <= x + y + y.
3 Proof.
4 generalize (x + y + y).

Listing B.6: Coq generalize simpl

Subst Transform an identifier into an equivalent term
The subst tactic substitute an identifier by something else which is equal.

For example, if we know that :

a = b

And we want to show :

204

B.1. INTRODUCTION TO COQ TATICS

b = a

We can use subst to transform the a in the goal into b, so our goal becomes b = b.
Listing B.7 show the corresponding Coq for this example.

1 Inductive bool: Set :=
2 | true
3 | false.
4
5 Lemma equality commutes:
6 ∀ (a: bool) (b: bool), a = b → b = a.
7 Proof.
8 intros.
9 subst.

Listing B.7: Coq tatic subst

Rewrite Replaces a term with an equivalent term if the equivalence of the terms has
already been proven.

Given some known equality a = b, the rewrite tactic lets you replace a with b or vice
versa in a hypothesis. The syntax is rewrite <equality> in <hypothesis> to replace a with
b or rewrite ← <equality> in <hypothesis> to replace b with a.

For example, if we have the hypothesis H0 :

f y = f z

And our goal is :
f x = f z

We can change our goal from fy into fx using rewrite backwards. This way we get :

f x = f y

Listing B.8 show the corresponding Coq for this example.
1 Inductive bool: Set :=
2 | true
3 | false.
4
5 Lemma equality of functions transits:
6 ∀ (f : bool→ bool) x y z, (f x) = (f y) → (f y) = (f z) → (f x) = (f z).
7 Proof.

205

APPENDIX B. COQ CONFIDENTIALITY

8 intros.
9 rewrite ← H0.

Listing B.8: Coq tatic rewrite

Simpl Simplifies the goal or hypotheses in the context.
The simpl tactic reduces complex terms to simpler forms. Using the syntax simpl in <

hypothesis>, simpl can also be used on a specific hypothesis in the context.
For example, if we have the following hypothesis :

220 − 1 = 219

Using the simpl tactic we obtain the simplified hypothesis :

219 = 219

Listing B.9 show the corresponding Coq for this example.
1 Theorem simple decrement :
2 220 − 1 = 219.
3 Proof.
4 simpl.

Listing B.9: Coq tatic simpl

Clear Erases a hypothesis from the local context.
clear <hypothesis> erases the hypothesis in the local context of the current goal. As
a consequence, the hypothesis is no more displayed and no more usable in the proof
development.

For example, during a proof if we don’t need a hypothesis named P holds, then we
can delete it using the clear tactic. Listing B.10 show the corresponding Coq for this
example.

1 Theorem [...] : [...],
2 [...]
3 Proof.
4 [...]
5 clear P holds.

Listing B.10: Coq tatic clear

Auto Solves a variety of easy goals.
auto performs a recursive proof search. It never fails even if it cannot do anything.

206

B.2. PROOF

For example, if we try to prove the following modus tollens theorem:

(P → Q)→ ¬Q → ¬P.

Using, the auto tactic show that the theorem is valid.
Listing B.11 show the corresponding Coq for this example.

1 Theorem modus tollens: ∀ (P Q : Prop),
2 (P → Q) → ¬Q → ¬P.
3 Proof.
4 auto.
5 Qed.

Listing B.11: Coq tatic auto

B.2 Proof

1 Definition PayloadConfidentiality B c1 c2 :=
2 ∀ c3 m d, not (In c3 [c1; c2]) → (B ⊢Eventually Any (E c3 (get pld m d))) →
3 not (B ⊢ (H c1 (inject m) && has rcv m c2) << (E c3 (get pld m d))).

Listing B.12: Coq PayloadConfidentiality property definition

Security policy. restrictiveGetP ld property constrains the inject and get pld opera-
tions using AllowedGetP ld. It is as an abstract security mechanism to satisfy the confi-
dentiality property by identifying components who are able to get the payload.

1 Record AllowedGetPld : Type := {
2 msg: Message ;
3 comp : Component;
4 }.
5
6 Definition restrictiveGetPld (p:AllowedGetPld) m B :=
7 (∀ c, (B ⊢Eventually Any (E c (inject m)) → (msg p = m ∧ Rcv m = comp p)))
8 ∧
9 (∀ c d, (B ⊢Eventually Any (E c (get pld m d))) → (msg p = m ∧ c = comp p)).

10
11 Definition connectorRestritiveGetPld p B :=
12 ∀ c m, (B ⊢Eventually Any (E c (intercept m))) → restrictiveGetPld p m B.

Listing B.13: Coq restrictiveGetPld policy definition

We can now proceed with the proof.

207

APPENDIX B. COQ CONFIDENTIALITY

Proof goal. We want to prove that if the connector con between c1 and c2 enforces the
allowedGetP ld policy (hypothesis connectorRestritiveGetP ld), then the confidentiality
objective (PayloadConfidentiality) between c1 and c2 holds, i.e., no c3 component is
able to get the payload of a message m send by c1 to c2 through connector con.

Proof overview. In order to show this, we use proof by contradiction. We assume
that connectorRestritiveGetP ld (the policy is deployed) and B ⊢ (H c1 (inject m)&&
has rcv m c2)<< E c3 (get pld m d) (the negation of the final implication of our proof goal
PayloadConfidentiality) and we derive a contradiction. The proof consists of the fol-
lowing steps:

Step 1 We define the initial hypotheses for all B behavior; c1, c2, c3 components; p

allowedGetP ld policy; m a message and d a payload.

Unfolding the definition and specializing some of them, we obtain the following starting
hypothesizes:

1. connector restritive get pld (specialize for c3 and m):

B ⊢Eventually Any (E c3 (intercept m))→

(∀ c : Agent, B ⊢Eventually Any (E c (inject m))

→ msg p = m ∧ Rcv m = comp p)

∧

(∀ (c : Agent) (d : Data), B ⊢Eventually Any (E c (get pld m d))

→ msg p = m ∧ c = comp p)

2. c3 not in c1 c2 (from MessageConfidenciality) :

¬ In c3 [c1; c2]

3. c3 eventually enable to get d (from MessageConfidenciality) :

B ⊢Eventually Any (E c3 (get pld m d))

4. c1 injected m to c2 (negation of the final implication of MessageConfidenciality

208

B.2. PROOF

(proof by contradiction)) :

B ⊢ (H c1 (inject m)&& has rcv m c2)<< E c3 (get pld m d)

Listing B.14 show the corresponding part of the proof using Coq.
1 Theorem confidentialityHold:
2 ∀ B c1 c2 p, connectorRestritiveGetPld p B → PayloadConfidentiality B c1 c2.
3 Proof.
4 intros B c1 c2 p connector restritive get pld .
5 unfold PayloadConfidentiality, connectorRestritiveGetPld, restrictiveGetPld in ∗.
6 intros c3 m d c3 not in c1 c2 c3 eventually enable to get d c1 injected m to c2.
7 specialize (connector restritive get pld c3 m).

Listing B.14: Coq confidentiality proof step 1

Step 2 In this step, we show that, as we know, the behavior B entails that eventually
c3 is able to get the payload d of message m, then it means that a behavior B entails that
eventually c3 intercepted this message before.

Starting from the hypothesis c3 eventually enable to get d :

B ⊢Eventually Any (E c3 (get pld m d))

1. We apply axiomInterceptHasP ldImpEGetP ld :

∀ B c m d, B ⊢(H c (intercept m)&& (has pld m d))<< E c (get pld m d)

For the component c3, message m and payload d.
This way we obtain axiomInterceptHasP ldImpEGetP ld c3 m d :

B ⊢ (H c3 (intercept m)&& (has pld m d))<< E c3 (get pld m d)

2. Then, we apply the lemma prec eventually :

∀ B p q A, (B ⊢p << q)

→ (B ⊢Eventually A q)

→ (B ⊢Eventually A p)

209

APPENDIX B. COQ CONFIDENTIALITY

For axiomInterceptHasP ldImpEGetP ld c3 m d :

(B ⊢ (H c3 (intercept m)&& has pld m d)<< E c3 (get pld m d))

→ (B ⊢Eventually Any H c3 (intercept m)&& has pld m d))

→ (B ⊢Eventually Any E c3 (get pld m d))

Therefore, we get the new hypothesis c3 eventually intercept m and hasP ld m d :

B ⊢Eventually Any (H c3 (intercept m)&& has pld m d)

3. By applying the lemma satEventuallyAnd elim :

B ⊢ ∀ B p q, (B ⊢p && q)→ ((B ⊢p)∧ (B ⊢q))

for c3 eventually intercept m and hasP ld m d.
We come by c3 eventually intercept m:

B ⊢Eventually Any (H c3 (intercept m))∧ B ⊢Eventually Any (has pld m d)

4. Finally, by breaking apart the conjunction we get c3 eventually intercept m :

B ⊢Eventually Any (H c3 (intercept m))

Therefore, we show that behavior B satisfies that eventually c3 intercepted this mes-
sage. Listing B.15 show the corresponding part of the proof using Coq.

1 generalize (axiomInterceptHasPldImpEGetPld B c3 m d). intro
axiomInterceptHasPldImpEGetPld c3 m d.

2 generalize (prec eventually axiomInterceptHasPldImpEGetPld c3 m d
c3 eventually enable to get d). clear axiomInterceptHasPldImpEGetPld c3 m d;

3 intro c3 eventually intercept m and hasPld m d.
4 apply satEventuallyAnd elim in c3 eventually intercept m and hasPld m d.
5 destruct c3 eventually intercept m and hasPld m d as [c3 eventually intercept m].

Listing B.15: Coq confidentiality proof step 2

Step 3. We show that as the behavior B satisfies eventually c3 intercepted the message
m, then it means that the behavior B satisfies eventually c3 was also able to intercept
this message.

210

B.2. PROOF

Starting from the newly obtain hypothesis c3 eventually intercept m :

B ⊢Eventually Any (H c3 (intercept m))

1. First, we generalize Axiom axiomHImpE :

∀ B c1 p, B ⊢ (H c1 p)⇒ (E c1 p)

For component c3 and the action intercept on the message m.
Consequently, we obtain axiomHImpE c3 intercept m :

∀ B : nat → Component ∗ Action,

B ⊢Eventually Any (H c3 (intercept m))

⇒ Eventually Any (E c3 (intercept m))

2. Next, we apply the lemma eventually imply :

∀ p q A, (∀ B, B ⊢p ⇒ q)

→ ∀ B, B ⊢Eventually A p ⇒ Eventually A q

For axiom1 c3 intercept m, we obtain ev c3 intercept m impl enable c3 intercept m:

B ⊢Eventually Any (H c3 (intercept m))

⇒ Eventually Any (E c3 (intercept m))

3. Then, we use the lemma satImpl elim :

∀ B p q, (B ⊢p ⇒ q)→ ((B ⊢p)→ (B ⊢q))

Generalized for ev c3 intercept m impl enable c3 intercept m and
axiomHImpE c3 intercept m.

211

APPENDIX B. COQ CONFIDENTIALITY

Thus, we obtain ev c3 intercept m impl enable c3 intercept m :

(B ⊢Eventually Any (H c3 (intercept m))

⇒ Eventually Any (E c3 (intercept m)))

→ (B ⊢Eventually Any (H c3 (intercept m)))

→ (B ⊢Eventually Any (E c3 (intercept m)))

4. Therefore, we get the new hypothesis c3 eventually e intercept m :

B ⊢Eventually Any (E c3 (intercept m))

Hence, we prove that the behavior B satisfies that eventually c3 was also able to intercept
this message. Listing B.16 show the corresponding part of the proof using Coq.

1 generalize(fun B → axiomHImpE B c3 (intercept m)); intro axiomHImpE c3 intercept m.
2 generalize (eventually imply Any axiomHImpE c3 intercept m B); clear

axiomHImpE c3 intercept m;
3 intro ev c3 intercept m impl enable c3 intercept m.
4 generalize (satImpl elim B ev c3 intercept m impl enable c3 intercept m

c3 eventually intercept m);
5 clear ev c3 intercept m impl enable c3 intercept m ev c3 intercept m impl enable c3 intercept m;
6 intro c3 eventually e intercept m.

Listing B.16: Coq confidentiality proof step 3

Step 4. We apply the hypothesis from the Step 1 connector restritive get pld in the
new hypothesis c3 eventually e intercept m obtained in the previous step in order to
simplify it. From this we then deduce restritive get pld.

212

B.2. PROOF

1. We apply connector restritive get pld :

B ⊢Eventually Any (E c3 (intercept m))→

(∀ c : Agent,

B ⊢Eventually Any (E c (inject m))

→ msg p = m ∧ Rcv m = comp p)

∧

(∀ (c : Agent) (d : Data),

B ⊢Eventually Any (E c (get pld m d))

→ msg p = m ∧ c = comp p)

In c3 eventually e intercept m :

B ⊢Eventually Any (E c3 (intercept m)

Therefore, we get restritive get pld :

(∀ c : Agent,

B ⊢Eventually Any (E c (inject m))

→ msg p = m ∧ Rcv m = comp p)

∧

(∀ (c : Agent) (d : Data),

B ⊢Eventually Any (E c (get pld m d))

→ msg p = m ∧ c = comp p)

Listing B.17 show the corresponding part of the proof using Coq.
1 apply connector restritive get pld in c3 eventually e intercept m as restritive get pld ; clear

connector restritive get pld c3 eventually e intercept m .

Listing B.17: Coq confidentiality proof step 4

Step 5. In this step, we simplify again the hypothesis restritive get pld and show that
c3 and m must be the same, respectively, as the component, denoted by comp p, and the
message, denoted by msg p, of the policy p. The obtained terms are then substituted in

213

APPENDIX B. COQ CONFIDENTIALITY

the rest of the hypotheses.

Starting from restritive get pld :

(∀ c : Agent,

B ⊢Eventually Any (E c (inject m))→ msg p = m ∧ Rcv m = comp p)

∧

(∀ (c : Agent) (d : Data),

B ⊢Eventually Any (E c (get pld m d))→ msg p = m ∧ c = comp p)

1. First, we separate c3 eventually e intercept m into two sub hypotheses:

• eventually e inj m impl valid policy

(∀ c : Agent,

B ⊢Eventually Any (E c (inject m))→ msg p = m ∧ Rcv m = comp p)

• eventually e get m d impl valid policy

(∀ (c : Agent) (d : Data),

B ⊢Eventually Any (E c (get pld m d))→ msg p = m ∧ c = comp p)

2. After, we apply the eventually e inj m impl valid policy for c1 :

B ⊢Eventually Any (E c1 (inject m))→ msg p = m ∧ Rcv m = comp p

3. Then, we apply the eventually e inj m impl valid policy for c3 and d :

B ⊢Eventually Any (E c3 (get pld m d))→ msg p = m ∧ c3 = comp p

4. As we know, c3 eventually enable to get d from Step 1 :

B ⊢Eventually Any (E c3 (get pld m d))

Is true, we deduce from eventually e inj m impl valid policy:

msg p = m ∧ c3 = comp p

214

B.2. PROOF

By breaking apart the conjunction the following two terms :

• msg p = m

• c3 = comp p

5. Finally, we substitute these terms in our hypothesis. This way we obtain the fol-
lowing updated hypothesis:

• c3 not in c1 c2 (from Step 1) :

¬ In (comp p)[c1; c2]

• c3 eventually intercept m (from Step 2) :

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

• c1 injected m to c2 (from Step 1):

B ⊢ (H c1 (inject (msg p)) && has rcv (msg p)c2) <<

E (comp p)(get pld (msg p) d)

• eventually e inj m impl valid policy (from current Step) :

B ⊢Eventually Any (E c1 (inject (msg p)))→

msg p = msg p ∧ Rcv (msg p)= comp p

Listing B.18 show the corresponding part of the proof using Coq.

1 destruct c3 eventually e intercept m as [eventually e inj m impl valid policy
eventually e get m d impl valid policy].

2 specialize (eventually e inj m impl valid policy c1).
3 specialize (eventually e get m d impl valid policy c3 d).
4 destruct (eventually e get m d impl valid policy c3 eventually enable to get d) ; clear

eventually e get m d impl valid policy .
5 subst.

Listing B.18: Coq confidentiality proof step 5

215

APPENDIX B. COQ CONFIDENTIALITY

Step 6. We show that, since the behavior B satisfies that eventually the component
denoted by comp p of the policy p is able to get the payload d from the message denoted
by msg p of the policy p, the behavior B satisfies that eventually the component comp p

is the one that intercepts the message msg p.

Starting from hypothesis c3 eventually enable to get d:

B ⊢Eventually Any (E (comp p)(get pld (msg p)d))

1. We begin by using Axiom axiomInterceptHasP ldImpEGetP ld:

∀ B c m d, B ⊢(H c (intercept m)&& (has pld m d))<< E c (get pld m d)

Generalized for the component of the policy comp p, the message protected by the
policy msg p and the payload d.
Therefore, we obtain axiomInterceptHasP ldImpEGetP ld comp p msg p d:

B ⊢ (H (comp p)(intercept (msg p)) && has pld (msg p)d)

<< E (comp p)(get pld (msg p)d

2. Then, using lemma prec eventually

∀ B p q A, (B ⊢p << q)→ (B ⊢Eventually A q)→ (B ⊢Eventually A p)

Generalized for axiomInterceptHasP ldImpEGetP ld comp p msg p d and c3
eventually enable to get d.

We get eventually h comp p intercept msg p:

B ⊢Eventually Any (H (comp p)(intercept (msg p)) && has pld (msg p)d)

3. Finally, we apply Lemma satEventuallyAnd elim :

B ⊢∀ B p q, (B ⊢p && q)→ ((B ⊢p)∧ (B ⊢q))

216

B.2. PROOF

for eventually h comp p intercept msg p to get :

B ⊢Eventually Any (H (comp p)(intercept (msg p))) ∧

B ⊢Eventually Any (has pld (msg p)d)

And, break apart the conjunction and keep only the left part as eventually h comp

p intercept msg p :

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

Thus, we prove that the behavior B satisfies eventually that the component of the
policy comp p is the one that intercepts the message protected by the policy msg p.
Listing B.19 show the corresponding part of the proof using Coq.

1 generalize(axiomInterceptHasPldImpEGetPld B (comp p) (msg p) d); intro
axiomInterceptHasPldImpEGetPld comp p msg p d.

2 generalize (prec eventually axiomInterceptHasPldImpEGetPld comp p msg p d
c3 eventually enable to get d).

3 clear axiomInterceptHasPldImpEGetPld comp p msg p d.
4 intro eventually h comp p intercept msg p.
5 apply satEventuallyAnd elim in eventually h comp p intercept msg p.
6 destruct eventually h comp p intercept msg p as [eventually h comp p intercept msg p].

Listing B.19: Coq confidentiality poof step 6

Step 7. In this step, we show that since the behavior B satisfies that eventually the
component comp p is the one that intercepts the message msg p, then the behavior B

satisfies that eventually the component c1 injected the message msg p.

Starting from hypothesis eventually h comp p intercept msg p:

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

1. First, we use axiom axiomInjectPrecIntercept :

∀ B c1 c2 m, B ⊢H c2 (inject m)<< E c1 (intercept m)

Generalized for the component of the policy comp p, component c1 and the message
protected by the policy msg p.

217

APPENDIX B. COQ CONFIDENTIALITY

We get axiomInjectPrecIntercept comp p c1 msg p d:

B ⊢H c1 (inject (msg p)) << E (comp p)(intercept (msg p))

2. Next, we use axiomHImpE:

∀ B c1 p, B ⊢ (H c1 p)⇒ (E c1 p)

Generalized for comp p, c1 and msg p to obtain axiomHImpE comp p intercept

msg p:

∀ B : nat → Agent ∗ Action,

B ⊢H (comp p)(intercept (msg p))⇒ E (comp p)(intercept (msg p))

3. After, we apply Lemma eventually imply:

∀ p q A, (∀ B, B ⊢p ⇒ q)→ ∀ B, B ⊢Eventually A p ⇒ Eventually A q

For comp p and msg p.

Therefore, we have ev H compP intercept msgP :

B ⊢Eventually Any (H (comp p)(intercept (msg p)))

⇒ Eventually Any (E (comp p)(intercept (msg p)))

4. Then, we use Lemma satImpl elim:

∀ B p q, (B ⊢p ⇒ q)→ ((B ⊢p)→ (B ⊢q))

Generalized for ev H compP intercept msgP and eventually h comp p intercept

msg p.

As the result, we get H c1 inject msgP impl E c1 inject msgP :

B ⊢Eventually Any (E (comp p)(intercept (msg p)))

218

B.2. PROOF

5. We use Lemma prec eventually:

∀ B p q A, (B ⊢p << q)→ (B ⊢Eventually A q)→ (B ⊢Eventually A p)

Applied for axiomInjectPrecIntercept compp c1 msg p d and H c1 inject msgP

impl E c1 inject msgP .
Thus, we obtain H c1 inject msgP impl E c1 inject msgP :

B ⊢Eventually Any (E (comp p)(intercept (msg p)))

Consequently, we deduce ev c1 inject msgP :

B ⊢Eventually Any (H c1 (inject (msg p))

It shows that the behavior B satisfies eventually that c1 injected msg p. Listing B.20
shows the corresponding part of the proof using Coq.

1 generalize (axiomInjectPrecIntercept B (comp p) c1 (msg p)); intro
axiomInjectPrecIntercept comp p c1 msg p d.

2 generalize(fun B → axiomHImpE B (comp p) (intercept (msg p))); intro
axiomHImpE comp p intercept msg p.

3 generalize (eventually imply Any axiomHImpE comp p intercept msg p B);
4 clear axiomHImpE comp p intercept msg p;
5 intro ev H compP intercept msgP.
6 generalize (satImpl elim B ev H compP intercept msgP eventually h comp p intercept msg p);
7 clear ev H compP intercept msgP;
8 intro H c1 inject msgP impl E c1 inject msgP.
9 generalize (prec eventually axiom2 comp p c1 msg p d

H c1 inject msgP impl E c1 inject msgP);
10 clear axiom2 comp p c1 msg p d H c1 inject msgP impl E c1 inject msgP;
11 intro ev c1 inject msgP.

Listing B.20: Coq confidentiality proof step 7

Step 8. We show that since the behavior B satisfies that eventually c1 injected the
message msg p, the behavior B also satisfies that eventually c1 was able to inject msg p.

Starting from ev c1 inject msgP

B ⊢Eventually Any (H c1 (inject (msg p)))

219

APPENDIX B. COQ CONFIDENTIALITY

1. First, we use Axiom axiomHImpE :

∀ B c1 p, B ⊢ (H c1 p)⇒ (E c1 p))

Generalized for the component c1 doing an inject for a message msg p. We obtain
axiomHImpE c1 inject msgP :

∀ B : nat → Agent ∗ Action, B ⊢H c1 (inject (msg p))⇒ E c1 (inject (msg p))

2. Then, using lemma eventually imply

∀ B p q, (B ⊢p ⇒ q)→ ((B ⊢p)→ (B ⊢q))

Applied for axiom1 c1 inject msgP .
We get H c1 inject msgP impl E c1 inject msgP :

B ⊢Eventually Any (E c1 (inject (msg p)))

3. Next, from Lemma satImpl elim:

B ⊢Eventually Any (H c1 (inject (msg p)))

⇒ Eventually Any (E c1 (inject (msg p)))

Using H c1 inject msgP impl E c1 inject msgP and ev c1 inject msgP , we come
by E c1 inject msgP :

B ⊢Eventually Any (E c1 (inject (msg p)))

Thus, we prove that the behavior B satisfies eventually c1 was able to inject the
message protected by the policy msg p. Listing B.21 shows the corresponding part of the
proof using Coq.

1 generalize(fun B → axiomHImpE B c1 (inject (msg p))); intro axiomHImpE c1 inject msgP.
2 generalize (eventually imply Any axiomHImpE c1 inject msgP B);
3 clear axiomHImpE c1 inject msgP;
4 intro H c1 inject msgP impl E c1 inject msgP.
5 generalize (satImpl elim B H c1 inject msgP impl E c1 inject msgP ev c1 inject msgP);
6 clear H c1 inject msgP impl E c1 inject msgP;
7 intro E c1 inject msgP.

220

B.2. PROOF

Listing B.21: Coq confidentiality proof step 8

Step 9. In this step, we show that through some simplifications from the previous hy-
potheses, the component comp p declared in the policy p must be the receiver Rcv (msg p)
of the message msg p declared in the policy p. Then, we rewrite the corresponding terms
in all our hypotheses.

Starting from hypothesis eventually e inj m impl valid policy :

B ⊢Eventually Any (E c1 (inject (msg p)))→ msg p = msg p ∧ Rcv (msg p)= comp p

1. First, as we know E c1 inject msgP is true:

B ⊢Eventually Any (E c1 (inject (msg p)))

We obtain policy :

msg p = msg p ∧ Rcv (msg p)= comp p

2. Then, we break apart the conjunction in policy and keep only the right part as
policyRight :

Rcv (msg p)= comp p

3. Therefore, we can rewrite terms using policyRight in our hypothesis. This way we
obtain the following updated hypothesis:

• c3 not in c1 c2 (from Step 5):

¬ In (Rcv (msg p))[c1; c2]

• c3 eventually enable to get d (from Step 5):

B ⊢Eventually Any (E (Rcv (msg p))(get pld (msg p)d))

221

APPENDIX B. COQ CONFIDENTIALITY

• c1 injected m to c2 (from Step 5) :

B ⊢ (H c1 (inject (msg p)) && has rcv (msg p)c2)

<< E (Rcv (msg p))(get pld (msg p)d)

• eventually h comp p intercept msg p (from Step 6) :

B ⊢Eventually Any (H (Rcv (msg p))(intercept (msg p)))

Listing B.22 shows the corresponding part of the proof using Coq.
1 generalize (eventually e inj m impl valid policy E c1 inject msgP).
2 clear E c1 inject msgP;
3 intro policy.
4 destruct policy as [policyRight].
5 rewrite ← policyRight in ∗; clear policyRight.

Listing B.22: Coq confidentiality proof step 9

Step 10. In this step, we show that c2 must also be the receiver Rcv (msg p) of the
message msg p of the policy p, which in turn contradicts the previous result and conclude
the proof.

Starting from hypothesis c1 injected m to c2 :

B ⊢ (H c1 (inject (msg p)) && has rcv (msg p)c2) << E (Rcv (msg p))(get pld (msg p)d)

1. First, we generalize Lemma prec eventually :

∀ B p q A, (B ⊢p << q)→ (B ⊢Eventually A q)→ (B ⊢Eventually A p)

For c1 injected m to c2 and c3 eventually enable to get d.
This way we get ev H c1 inject msgP :

B ⊢Eventually Any(H c1 (inject (msg p)) && has rcv (msg p)c2))

2. Next, we apply Lemma satEventuallyAnd elim :

B ⊢∀ B p q, (B ⊢p && q)→ ((B ⊢p)∧ (B ⊢q))

222

B.2. PROOF

in ev h c1 inject msgP and hasRcv msgP c2:

B ⊢Eventually Any (H c1 (inject (msg p)) && has rcv (msg p)c2)

This way we get :

B ⊢Eventually Any (H c1 (inject (msg p))) ∧ B ⊢Eventually Any (has rcv (msg p)c2)

3. Then, by breaking apart the conjunction and keeping only the right part we obtain
ev hasRcv msg2 c2:

B ⊢Eventually Any (has rcv (msg p)c2)

4. Then, we apply Axiom HasRcv:

∀ B A r m, (B ⊢Eventually A (has pld m r))→ r = Pld m

in ev hasRcv msg2 c2. As a result, we come by ev hasRcv msg2 c2:

c2 = Rcv (msg p)

5. Finally, we substitute these terms in our hypothesis. This way we obtain the fol-
lowing updated hypothesis:

• c3 not in c1 c2 (from Step 9) :

¬ In (Rcv (msg p))[c1; Rcv (msg p)]

Hypothesis c3 not in c1 c2 shows a contradiction, hence, as Coq IDE shows, the proof
is complete. Q.E.D.

Listing B.23 shows the corresponding part of the proof using Coq.
1 generalize (prec eventually c1 injected m to c2 c3 eventually enable to get d);
2 clear c1 injected m to c2 c3 eventually enable to get d ;
3 intro ev h c1 inject msgP and hasRcv msgP c2.
4 apply satEventuallyAnd elim in ev h c1 inject msgP and hasRcv msgP c2.
5 destruct ev h c1 inject msgP and hasRcv msgP c2 as [ev hasRcv msg2 c2].
6 apply HasRcv in ev hasRcv msg2 c2.
7 subst.
8 apply c3 not in c1 c2.

223

APPENDIX B. COQ CONFIDENTIALITY

9 simpl.
10 auto.
11 Qed.

Listing B.23: Coq confidentiality proof step 10

224

B.2. PROOF

225

APPENDIX B. COQ CONFIDENTIALITY

226

Glossary

Alloy

Alloy is an open source language and analyzer for software modeling. It has been
used in a wide range of applications, from finding holes in security mechanisms to
designing telephone switching networks. (taken from http://alloytools.org/)

API

Application Programming Interface

CBD

Component-Based Development

CBSE

Component Based Software Engineering

CIAA

CIAA is security objectives classification references. It include classical CIA triad
(Confidentiality, Integrity, Availability) and its extension to include the fourth pil-
lar of Authenticity named CIAA quartet [30].) Therefore, CIAA classifies security
objectives into four categories: Confidentiality, Integrity, Authenticity, and Avail-
ability.

CLASP

see: Comprehensive, Lightweight Application Security Process

Comprehensive, Lightweight Application Security Process

The Comprehensive, Lightweight Application Security Process (CLASP) is a pro-
cess, developed by the OWASP Foundation, providing a well-organized and struc-
tured approach for moving security concerns into the early stages of the software
development life cycle, whenever possible.

227

http://alloytools.org/

Glossary

Coq

Coq is a formal proof management system. It provides a formal language to write
mathematical definitions, executable algorithms and theorems together with an en-
vironment for semi-interactive development of machine-checked proofs. (taken from
https://coq.inria.fr/)

DSL

Domain Specific Language

DSM

Domain Specific Modeling

DSM

Distributed Shared Memory

DSML

Domain Specific Modeling Language

Eclipse Modeling Framework Technology

The Eclipse Modeling Framework Technology (EMFT) project exists to incubate
new technologies that extend or complement EMF. see also: Eclipse Modeling
Framework

Eclipse Modeling Framework

The Eclipse Modeling Framework is an Eclipse-based modeling framework and code
generation facility for building tools and other applications based on a structured
data model.

Ecore

Ecore is a reference implementation of OMG’s EMOF. see also: Eclipse Modeling
Framework

EMF

see: Eclipse Modeling Framework

EMFT

see: Eclipse Modeling Framework Technology

228

https://coq.inria.fr/

Glossary

EMOF

Essential MOF

IDE

see: Integrated Development Environment

IEEE

Institute of Electrical and Electronics Engineers

Integrated Development Environment

An Integrated Development Environment is software that consolidates the basic
tools needed for software testing and writing.

ISO

International Organization for Standardization

MBE

Model-Based Engineering

MDD

Model-Driven Development

MDE

Model-Driven Engineering

Meta-Object Facility

The Meta-Object Facility (MOF) is an Object Management Group standard for
model-driven engineering, defining a meta-metamodel.

Microsoft STRIDE

Microsoft STRIDE is security model which categorizes different types of threats and
simplifies the overall security conversations. It classifies threats into six categories:
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege.

Microsoft Security Development Life cycle

Microsoft Security Development Life cycle (SDL) is a security-oriented development
lifecycle proposed by Microsoft.

229

Glossary

MOF

see: Meta-Object Facility

MPS

Message Passing System

NIST

National Institute of Standards and Technology

Object Constraint Language

Object Constraint Language (OCL), a declarative language for describing rules ap-
plying to OMG-style metamodels and providing constraint and object queries.

Object Management Group

Object Management Group (OMG), an international, open membership, not-for-
profit technology standards consortium.

OCL

see: Object Constraint Language

OMG

see: Object Management Group

Open Web Application Security Project

The Open Web Application Security Project is a nonprofit foundation that works
to improve the security of software. Through community-led open-source software
projects, hundreds of local chapters worldwide, tens of thousands of members, and
leading educational and training conferences, the OWASP Foundation is the source
for developers and technologists to secure the web. (taken from https://owasp.
org/

OWASP

see: Open Web Application Security Project

PBSE

Pattern-Based System and Software Engineering

230

https://owasp.org/
https://owasp.org/

Glossary

RPC

Remote Procedure Call

S&D

Security and Dependability

SDL

see: Microsoft Security Development Life cycle

Touchpoints

McGraw’s Touchpoints is a security approach based touchpoints between security
concepts and concepts generally used in process models.

UML

see: Unified Modeling Language

Unified Modeling Language

Unified Modeling Language (UML) is a general-purpose modeling language in the
field of software engineering and is defined by the Object Management Group.

Xtend

Xtend a statically typed programming language that produces understandable Java
code. Xtend is based on the Java programming language in terms of syntax and
semantics, however it improves on several aspects. This aspects made Xtend well-
suited to the task of code generation. It is fully integrated into Xtext.

Xtext

Xtext is a framework for development of programming languages and domain specific
languages. It covers all aspects of a complete language infrastructure, from parsers,
over linker, compiler or interpreter to fully-blown top-notch Eclipse IDE integration.
It comes with great defaults for all these aspects which at the same time can be easily
tailored to your individual needs. (taken from https://eclipse.org/Xtext/)

231

https://eclipse.org/Xtext/

	Table of contents
	List of figures
	List of tables
	List of listings
	Introduction
	Context
	Problem statement
	Research objectives
	Contributions
	Publications
	Thesis outline

	Technical frameworks
	Introduction
	Software systems engineering
	Component based development
	Model-based engineering (MBE)
	Models
	Model-Driven Engineering (MDE)
	Domain Specific Modeling Language (DSML)

	Incorporating security in system and software engineering
	Generic Software Systems Security Engineering
	Model-Based Software Systems Security Engineering

	Formal techniques for specification and verification
	Logics
	Finite State machine (FSM)
	First order logic (FOL)
	Modal Logic (ML)

	Formal Techniques
	Alloy
	Coq

	Development environment
	Eclipse Modeling Framework
	Alloy Analyser
	Coq IDE

	Introduction to the case studies
	College library web application
	Smart meter gateway

	Approach
	Introduction
	Conceptual vision
	Methodology for the creation of a design and analysis framework
	Supporting the approach within SDLC
	Conclusion

	Software architecture
	Introduction
	Related work
	Methodology for the creation of a design and analysis framework
	Supporting the approach within the SDLC
	Software architecture meta-model
	Scenario view
	Logical specification
	Communication behavior semantics
	Communication properties specification

	Formal specification and analysis in Alloy
	Formalizing the software architecture meta-model
	Formalizing and verifying connectors and their properties

	Tool Support
	Modeling framework block
	Application development block

	Conclusion

	Security threats
	Introduction
	Related work
	Methodology for the creation of a design and analysis framework
	Supporting security-by-design within the SDLC
	Property view
	Logical specification
	STRIDE security threats

	Formal specification and analysis in Alloy
	Formalizing the negative perspective of the property meta-model
	STRIDE security threats

	Tool support
	Modeling framework block
	Application development block

	Conclusion

	Security objectives
	Introduction
	Related work
	Methodology for the creation of a design and analysis framework
	Supporting security-by-design within the SDLC
	Property view
	Logical specification
	CIAA security objectives

	Formal specification and analysis in Alloy
	Formalizing the positive perspective of the property meta-model
	CIAA security objectives

	Formal specification and analysis in Coq
	Formalizing the software component meta-model and properties meta-model
	Confidentiality in Coq

	Tool Support
	Automated formal tool : Alloy
	Modeling framework block
	Application development block

	Proof assistant : Coq
	Modeling framework block
	Application development block

	Conclusion

	Evaluation of the contributions
	Introduction
	Case study
	Expressing the architecture of the smart meter gateway
	Security analysis
	Negative perspective (security threats)
	Positive perspective (security objectives)

	Discussions
	Applications of the proposed approach
	Generalization of the proposed approach
	Tool support : automated tool and proof complementarity

	Conclusion & future works
	Summary and contributions
	Limitations and future works
	Perspectives

	Bibliography
	Appendices
	Architecture : Additional communication paradigms RPC & DSM
	Scenario view
	Communication behavior semantics
	Remote procedure call
	Distributed shared memory

	Communication paradigms properties specification
	Remote procedure call
	Distributed shared memory

	Meta-Model
	Formalizing the software architecture metamodel
	Formalizing and verifying connectors and their properties
	Remote procedure call
	Distributed shared memory

	Building the concrete architecture for the illustrative example

	Coq confidentiality
	Introduction to Coq tatics
	Proof

	Glossary

